Skip to main content
Log in

A comparative study on the separation of radioyttrium from Sr- and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86Y, 87Y and 88Y using a cyclotron

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The radiochemical separation of 88Y from proton irradiated natSrCO3 and alpha-particle irradiated natRbCl, of 86Y from proton irradiated 86SrCO3, and of 87Y from alpha-particle irradiated natRbCl were studied at no-carrier-added levels by two techniques, namely, ion-exchange chromatography using Dowex 50W-X8 and Dowex 21K resins, and solvent extraction using HDEHP. Out of all those methods, the ion-exchange chromatography using Dowex 50W-X8 (cation-exchanger) was found to be the best: the separation yield was high, the chemical impurity in the separated radioyttrium (inactive Sr or Rb) was low (0.5 μg) and the final product was obtained in the form of citrate. The optimized separation method using Dowex 50W-X8 was applied in practical production of 86Y and 88Y via proton irradiations of 86SrCO3 and natSrCO3, respectively, at 16 MeV as well as of 87Y and 88Y via α-particle irradiation of natRbCl at 26 MeV. The tangible experimental yields of 86Y and 87Y amounted to 150 and 5.7 MBq/μA·h, respectively. The yields of 88Y obtained were 0.06 MBq/μA·h and 1 MBq/μA·h for alpha-particle and proton irradiations, respectively. Each yield value corresponds to more than 70% of the respective theoretical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kutzner, K. Hahn, G. J. Beyer, W. Grimm, A. Bockisch, H. P. Rösler, Nuklearmedizin, 31 (1992) 53.

    CAS  Google Scholar 

  2. H. Herzog, F. Rösch, G. Stöcklin, C. Lueders, S. M. Qaim, L. E. Feinendegen, J. Nucl. Med., 34 (1993) 2222.

    CAS  Google Scholar 

  3. J. F. Allen, J. J. Pinajian, Intern. J. Appl. Radiation Isotopes, 16 (1965) 319.

    Article  CAS  Google Scholar 

  4. A. G. M. Janssen, R. A. M. J. Claessens, R. L. P. Van Den Bosch, J. J. M. De Goeij, Appl. Radiation Isotopes, 37 (1986) 297.

    Article  CAS  Google Scholar 

  5. M. Hillman, M. Greene, W. N. Bishop, P. Richards, Intern. J. Appl. Radiation Isotopes, 17 (1966) 9.

    Article  CAS  Google Scholar 

  6. Y. Homma, M. Ishii, Y. Murase, Intern. J. Appl. Radiation Isotopes, 31 (1980) 399.

    Article  CAS  Google Scholar 

  7. G. J. Beyer, R. Bergmann, G. Kampf, P. Mäding, F. Rösch, Nucl. Med. Biol., 19 (1992) 201.

    CAS  Google Scholar 

  8. K. Kettern, K.-H. Linse, S. Spellerberg, H. H. Coenen, S. M. Qaim, Radiochim. Acta, 90 (2002) 845.

    Article  CAS  Google Scholar 

  9. F. Rösch, S. M. Qaim, G. Stöcklin, Radiochim. Acta, 61 (1993) 1.

    Google Scholar 

  10. F. Rösch, S. M. Qaim, G. Stöcklin, Appl. Radiation Isotopes, 44 (1993) 677.

    Article  Google Scholar 

  11. V. I. Levin, L. N. Kurtchatova, A. B. Malinin, Radiokhimiya, 14 (1972) 106.

    Google Scholar 

  12. G. Reischle, F. Rösch, H.-J. Machulla, Radiochim. Acta, 90 (2002) 225.

    Article  Google Scholar 

  13. K. Garmestani, D. E. Milenic, P. S. Plascjak, M. W. Brechbiel, Nucl. Med. Biol., 29 (2002) 599.

    Article  CAS  Google Scholar 

  14. L. S. Park, L. P. Szajek, K. J. Wong, P. S. Plascjak, K. Garmestani, S. Googins, W. C. Eckelman, J. A. Carrasquillo, C. H. Paik, Nucl. Med. Biol., 31 (2004) 297.

    Article  CAS  Google Scholar 

  15. IAEA Consultants’ Meeting on Production Methods (using Cyclotron) for Emerging Radioisotopes and Generator Based Positron Emitters for Clinical and Research Applications, 30 July to 2 August 2007, Vienna, Austria.

  16. G. Blessing, R. Weinreich, S. M. Qaim, G. Stöcklin, Intern. J. Appl. Radiation Isotopes, 33 (1982) 333.

    Article  CAS  Google Scholar 

  17. R. B. Firestone, Table of Isotopes, CDROM ed., Version 1.0, Wiley-Interscience, New York, 1996.

    Google Scholar 

  18. S. A. Kandil, B. Scholten, Z. A. Saleh, A. M. Youssef, S. M. Qaim, H. H. Coenen, J. Radioanal. Nucl. Chem., 274 (2007) 45.

    Article  CAS  Google Scholar 

  19. E. R. Tompkins, S. W. Mayer, J. Am. Chem. Soc., 69 (1947) 2859.

    Article  CAS  Google Scholar 

  20. T. Sato, J. Inorg. Nucl. Chem., 24 (1962) 699.

    Article  Google Scholar 

  21. T.-W. Lee, G. Ting, Isotopenpraxis, 27 (1991) 269.

    CAS  Google Scholar 

  22. T. Sato, M. Ueda, J. Inorg. Nucl. Chem., 35 (1973) 1003.

    Article  CAS  Google Scholar 

  23. J. P. Blaser, F. Boehm, P. Marmier, P. Scherrer, Helv. Phys. Acta, 24 (1951) 441.

    CAS  Google Scholar 

  24. V. N. Levkovskij, Middle mass nuclides (A = 40–100) activation cross sections by medium energy (E = 10-50 MeV) protons and α-particles (experiment and systematics), Inter-Vesi, Moscow, 1991, p. 147.

    Google Scholar 

  25. S. A. Kandil, I. Spahn, B. Scholten, Z. A. Saleh, S. M. M. Saad, H. H. Coenen, S. M. Qaim, Appl. Radiation Isotopes, 65 (2007) 561.

    Article  CAS  Google Scholar 

  26. S. M. Qaim, Nucl. Instr. Meth., A282 (1989) 289.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Qaim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandil, S.A., Scholten, B., Hassan, K.F. et al. A comparative study on the separation of radioyttrium from Sr- and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86Y, 87Y and 88Y using a cyclotron. J Radioanal Nucl Chem 279, 823–832 (2009). https://doi.org/10.1007/s10967-008-7407-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-008-7407-0

Keywords

Navigation