A combined method for the determination of the isotopic vector of plutonium isotopes in environmental samples

Abstract

A combination of alpha-spectrometry, liquid scintillation counting (LSC) and accelerator mass spectrometry (AMS) was used for the determination of plutonium isotopes. 238Pu and 239+240Pu were measured by alpha-spectrometry after separation of Pu by anion-exchange using 236Pu tracer as recovery monitor. After alpha-measurement, one part of the sample was dissolved for determining 241Pu by LSC. Another part was used for the measurement of the 240Pu/239Pu atom ratio by AMS at VERA. Thus, it was possible to obtain complete information on the Pu isotopic composition of the samples. This method was applied to environmental reference samples and samples contaminated from nuclear reprocessing.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. J. Kershaw, D. S. Woodhead, M. B. Lovett, K. S. Leonard, Appl. Radiation Isotopes, 46 (1995) 1121.

    Article  CAS  Google Scholar 

  2. 2.

    D. Oughton, P. Day, K. Fifield, Plutonium measurement using accelerator mass spectrometry: Methodology and applications, in: Plutonium in the Environment, Edited Proc. 2nd Invited International Symposium, A. Kudo (Ed.), Elsevier, Amsterdam, 2001, p. 47.

    Google Scholar 

  3. 3.

    P. W. Krey, E. P. Hardy, C. Pachucki, F. Rourke, J. Coluzza, W. K. Benson, Mass Isotopic Composition of Global Fall-Out Plutonium in Soil, Transuranium Nuclides in the Environment, IAEA-SM-199/39, IAEA, Vienna, 1976, p. 671.

    Google Scholar 

  4. 4.

    T. Warneke, I. W. Croudace, P. E. Warwick, R. N. Taylor, Earth Planet. Sci. Lett., 203 (2002) 1047.

    Article  CAS  Google Scholar 

  5. 5.

    H. Yamana, T. Yamamoto, H. Moriyama, Isotopic ratio of Pu released from fuel cycle facilities — importance of radiochemically pure 236Pu as a tracer, in: Plutonium in the Environment — Edited Proc. 2nd Invited International Symposium, A. Kudo (Ed.), Elsevier, Amsterdam, 2001, p. 31.

    Google Scholar 

  6. 6.

    M. Yamamoto, A. Tsumura, Y. Katayama, T. Tsukatani, Radiochim. Acta, 72 (1996) 209.

    CAS  Google Scholar 

  7. 7.

    K. Irlweck, E. Hrnecek, J. Radioanal. Nucl. Chem., 242 (1999) 595.

    Article  CAS  Google Scholar 

  8. 8.

    E. Hrnecek, P. Steier, A. Wallner, Appl. Radiation Isotopes, 63 (2005) 633.

    Article  CAS  Google Scholar 

  9. 9.

    D. L. Donohue, J. Alloys Comp., 271–273 (1998) 11.

    Article  Google Scholar 

  10. 10.

    C. Wallner, T. Faestermann, U. Gerstmann, W. Hillebrandt, K. KNIE, G. KORSCHINEK, C. LIERSE, C. POMAR, G. RUGEL, Nucl. Instr. Meth. Phys. Res., B172 (2000) 333.

    Article  Google Scholar 

  11. 11.

    S. Winkler, I. Ahmad, R. Golser, W. Kutschera, K. A. Orlandini, M. Paul, A. Priller, P. Steier, C. Vockenhuber, New Astron. Rev., 48 (2004) 151.

    Article  CAS  Google Scholar 

  12. 12.

    K. Mayer, G. Rasmussen, M. Hild, E. Zleger, H. Ottmar, S. Abousahl, E. Hrnecek, Application of Isotopic Fingerprinting in Nuclear Forensic Investigations: A Case Study, Advances in Destructive and Non-Destructive Analysis for Environmental Monitoring and Nuclear Forensics, STI/PUB/1169, IAEA, Vienna, 2003, p. 63.

    Google Scholar 

  13. 13.

    D. Solatie, P. Carbol, E. Hrnecek, T. Jaakkola, M. Betti, Radiochim. Acta, 90 (2002) 447.

    Article  CAS  Google Scholar 

  14. 14.

    T. P. Ryan, P. I. Mitchell, J. Vives I Batlle, J. A. Sanchez-Cabeza, A. T. McGarry, W. R. Schell, Low-level 241Pu Analysis by Supported-Disk Liquid Scintillation Counting, J. E. Noakes, F. Schönhofer, H. A. Pollach (Eds), Liquid Scintillation Spectrometry 1992, Radiocarbon, Tucson, 1993, p. 75.

    Google Scholar 

  15. 15.

    J. Moreno, J. J. LaRosa, P. R. Danesi, K. Burns, P. DeRegge, N. Vajda, M. Sinojmeri, Radioact. Radiochem., 9 (1998) 35.

    CAS  Google Scholar 

  16. 16.

    E. Hrnecek, L. Aldave De Las Heras, M. Betti, Radiochim. Acta, 90 (2002) 721.

    Article  CAS  Google Scholar 

  17. 17.

    P. P. Povinec, J. Radioanal. Nucl. Chem., 263 (2005) 413.

    CAS  Google Scholar 

  18. 18.

    I. Adsley, D. Andrew, D. Arnold, R. Bojanowski, Y. Bourlat, A. R. Byrne, M-T. Crespo, J. Desmond, P. De Felice, A. Fazio, J. L. Gascón, R. S. Grieve, A. S. Holmes, S. M. Jerome, M. Korun, M. Magoni, K. J. Odell, D. S. Popplewell, I. Poupaki, G. Sutton, J. Toole, M. W. Wakerley, H. Wershofen, M. J. Woods, M. J. Youngman, Appl. Radiation Isotopes, 49 (1998) 1295.

    Article  CAS  Google Scholar 

  19. 19.

    C. Vockenhuber, I. Ahmad, R. Golser, W. Kutschera, V. Liechtenstein, A. Priller, P. Steier, S. Winkler, Intern. J. Mass Spectrom., 223–224 (2003) 713.

    Article  Google Scholar 

  20. 20.

    S. H. Lee, J. Gastaud, J. J. La Rosa, L. Liong Wee Kong, P. P. Povinec, E. Wyse, L. K. Fifield, P. A. Hausladen, L. M. Di Tada, G. M. Santos, J. Radioanal. Nucl. Chem., 248 (2001) 757.

    Article  CAS  Google Scholar 

  21. 21.

    Y. Muramatsu, S. Uchida, K. Tagami, S. Yoshida, T. Fujikawa, J. Anal. At. Spectrom., 14 (1999) 859.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Hrnecek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hrnecek, E., Jakopič, R., Wallner, A. et al. A combined method for the determination of the isotopic vector of plutonium isotopes in environmental samples. J Radioanal Nucl Chem 276, 789–793 (2008). https://doi.org/10.1007/s10967-008-0633-7

Download citation

Keywords

  • Plutonium
  • Accelerator Mass Spectrometry
  • Accelerator Mass Spectrometry
  • Plutonium Isotope
  • 236Pu Tracer