Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 277, Issue 2, pp 337–345 | Cite as

Synthesis and characterization of radiation sensitive TiO2/monazite photocatalyst

  • C. T. YuEmail author
  • C. F. Wang
  • T. Y. Chen
  • Y. T. Chang
Article

Abstract

A TiO2/monazite photocatalyst was prepared by embedding TiO2 nanoparticles into a monazite substrate surface. TiCl4 hydrolysis/citric acid chelating procedure under acidic conditions were used to synthesize the nanophase TiO2 particles. The anatase TiO2/monazite photocatalyst surface area, morphology, crystalline and elemental concentrations were characterized using Brunauer-Emmett-Teller (BET) method, scanning electron microscopy (SEM), X-ray diffraction (XRD), and inductively coupled plasma-atomic emission spectrometry (ICP-AES). Monazite contains a large amount of Ce-, La-, Nd- and Th-PO4 compounds; it has been known as a natural mineral material with minor radioactivity. TiO2-CeO2 composite is a kind of radiation sensitive photocatalyst in which the radiations of thorium nuclides give energy to trigger TiO2 and cerium ions which play an energy absorber with charge separator. The result showed that methylene blue and phenol were spontaneously photocatalytic decomposed by TiO2/monazite composite even in a dark environment. A synergistic effect was also examined with applied exterior UV or 60Co irradiation. A hybrid mechanism is proposed; according by the radioluminescence (RL) from excited Ce ion by γ-radiation soliciting CeO2/TiO2 heterojunction (HJ). This seems to be a possible mechanism to explain this self-activated photo-catalytic behavior.

Keywords

Methylene Blue Photocatalytic Activity Photocatalytic Decomposition High Energy Radiation 60Co Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Yibing, Y. Chunwei, Rare Metals, 23 (2004) 20.Google Scholar
  2. 2.
    Z. C. Jin, J. Hamberg, C. G. Granqvist, J. Appl. Phys., 64 (1988) 5117.CrossRefGoogle Scholar
  3. 3.
    J. B. Yoo, A. L. Fahrenbruch, R. H. Bube, J. Appl. Phys., 68 (1990) 4694.CrossRefGoogle Scholar
  4. 4.
    S. Major, S. Kumar, M. Bhatnagar, K. L. Chopra, Appl. Phys. Lett., 49 (1986) 394.CrossRefGoogle Scholar
  5. 5.
    A. J. Wojtowicz, Nucl. Instr. Meth., A486 (2002) 201.Google Scholar
  6. 6.
    R. Lindner, M. Reichling, E. Matthias, H. Johansen, Appl. Phys., B68 (1999) 233.CrossRefGoogle Scholar
  7. 7.
    B. Liu, X. Zhao, N. Zhang, Q. Zhao, X. He, J. Feng, Surface Sci., 595 (2005) 203.CrossRefGoogle Scholar
  8. 8.
    A. Mills, S. Le Hunte, J. Photo. Photo A: Chemistry, 108 (1997) 1.Google Scholar
  9. 9.
    T. Miki, T. Ogawa, M. Haneda et al., J. Phys. Chem., 94 (1990) 6464.CrossRefGoogle Scholar
  10. 10.
    C. F. Wang, C. T. Yu, B. H. Lin, J. H. Lee, J. Photo. Photo A: Chemistry, 182 (2006) 93.Google Scholar
  11. 11.
    B. Liu, X. Zhao, N. Zhang, Q. Zhao, X. He, J. Feng, Surface Sci., 595 (2005) 203.CrossRefGoogle Scholar
  12. 12.
    J. K. Thomas, Chem. Rev., 93 (1993) 301.CrossRefGoogle Scholar
  13. 13.
    Y. Mao, K. K. Iu, J. K. Thomas, Langmuir, 10 (1994) 709.CrossRefGoogle Scholar
  14. 14.
    T. Miyazaki, Y. Katsumura, M. Lin et al., Radiat. Phys. Chem., 75 (2006) 408.CrossRefGoogle Scholar
  15. 15.
    M. G. Bettoli, M. Ravanelli, L. Tositti et al., Radiat. Phys. Chem., 52 (1998) 327.CrossRefGoogle Scholar
  16. 16.
    L. C. Luchini, T. B. Peres, M. O. De O. Rezende, J. Radioanal. Nucl. Chem., 241 (1999) 191.CrossRefGoogle Scholar
  17. 17.
    G. A. Zacheis, K. A. Gray, P. V. Kamat, J. Phys. Chem., B130 (1999) 2142.Google Scholar
  18. 18.
    G. A. Zacheis, K. A. Gray, P. V. Kamat, J. Phys. Chem., B105 (2001) 4715.Google Scholar
  19. 19.
    N. Chitose, S. Ueta, S. Seino et al., Chemospher., 50 (2003) 1007.CrossRefGoogle Scholar
  20. 20.
    J. C. Gonzalez-Juarez, J. Jimenez-Becerril, Radiat. Phys. Chem., 75 (2006) 768.CrossRefGoogle Scholar
  21. 21.
    C. T. Yu, C. F. Wang, W. Z. Wang, J. Photo. Photo A: Chemistry, 186 (2007) 369.Google Scholar
  22. 22.
    S. Lakshmi, R. Renganathan, S. Fujita, J. Photo. Photo A: Chemistry, 88 (1999) 163.Google Scholar
  23. 23.
    S. Hashimoto, T. Miyata, M. Washino, W. Kawakami, Environ. Sci. Technol., 13 (1979) 71.CrossRefGoogle Scholar
  24. 24.
    S. S. Hong, C. S. Ju, C. G. Lim, B. H. Ahn, K. T. Lim, G. D. Lee, J. Ind. Eng. Chem., 7 (2001) 99.Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  • C. T. Yu
    • 1
    Email author
  • C. F. Wang
    • 2
  • T. Y. Chen
    • 2
  • Y. T. Chang
    • 2
  1. 1.Chemical Analysis DivisionInstitute of Nuclear Energy ResearchLongtanChina
  2. 2.Department of Bioengineering and Environmental ScienceNational Tsing Hua UniversityHsinchuChina

Personalised recommendations