Skip to main content
Log in

Bioligand-mediated partitioning of radionuclides to the aqueous phase

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The aqueous-phase partitioning of 59Fe, 147Pm, 234Th and 241Am by complexing compounds from subsurface bacteria has previously been studied in the presence of quartz sand. In this study the aqueous-phase partitioning of pico-to submicromolar amounts of 59Fe, 147Pm, 234Th and 241Am was analyzed in the presence of TiO2 and exudates from three species of subsurface bacteria: Pseudomonas fluorescens, Pseudomonas stutzeri, and Shewanella putrefaciens. All were grown under aerobic conditions and P. stutzeri and S. putrefaciens were grown under anaerobic conditions as well. The supernatants of the aerobic and anaerobic cultures were collected and radionuclide was added. TiO2, with BET surface area of 49.9 m2·g−1, was added to the supernatant radionuclide mix, and the pH was adjusted to approximately 8. After incubation, the amount of radionuclide in the liquid phase of the samples and controls was analyzed using scintillation method. Two types of values were calculated: solution% = the activity maintained in solution relative to the total activity, and Q-values = the quotient between the activity in samples and the activity in controls. Aerobic supernatants had solution% values between 89% and 100% for 59Fe and between 18 and 43% for 234Th. The solution% values for 241Am and 147Pm were less than 2% overall, but the Q-values were between 34 and 115 times more 241Am in bacterial supernatants than in controls. The corresponding values for 147Pm ranged from 6 to 20 times more than in the control. The solution% values for all elements in the presence of anaerobic supernatants were below 2%, but the Q-values clustered around 7 for 59Fe and ranging from 2 to 29 for 234Th, indicated that anaerobic supernatants partitioned these elements to the aqueous phase. Both aerobic and anaerobic supernatants tested positive for complexing compounds when analyzed, using the Chrome Azurol S assay. Complexation with excreted organic ligands is most likely the reason for the higher amounts of metals in samples than in the controls. Hence, aerobically and anaerobically excreted organic ligands seem able to influence the mobility of radionuclides in aerobic and anaerobic environments contaminated with these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Lieser, Radiochim. Acta, 70–71 (1995) 355.

    Google Scholar 

  2. V. Metz, B. Kienzler, W. Schuler, J. Contam. Hydrol., 61 (2003) 265.

    Article  CAS  Google Scholar 

  3. K. Pedersen, Microbial Processes in the Disposal of High Level Radioactive Waste 500 m Underground in Fennoscandian Shield Rocks, Elsevier, Amsterdam, 2002, p. 279.

  4. P. Toulhoat, Comp. Rend. Phys., 3 (2002) 975.

    CAS  Google Scholar 

  5. W. B. Whitman, D. C. Coleman, W. J. Wiebe, Proc. Natl. Acad. Sci., 95 (1998) 6578.

    Article  CAS  Google Scholar 

  6. K. Pedersen, Diversity and Activity of Microorganisms in Deep Igneous Rock Aquifers of the Fennoscandian Shield, John Wiley & Sons Inc., New York, 2001, p. 97.

    Google Scholar 

  7. A. Johnsson, J. Arlinger, A. Ödegaard-Jensen, Y. Albinsson, K. Pedersen, Geomicrobiol. J., 23 (2006) 621.

    Article  CAS  Google Scholar 

  8. A. M. Jakobsson, Measurement and Modelling Using Surface Complexation of Cation (II to IV) Sorption onto Mineral Oxides, Thesis, Chalmers University of Technology, Sweden, 1999.

    Google Scholar 

  9. W. Stumm, J. J. Morgan, Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed., John Wiley & Sons Inc., New York, 1996, p. 1022.

    Google Scholar 

  10. M. Wazne, X. Meng, G. Korfiatis, C. Christodoulatos, J. Hazard. Mater., 136 (2006) 47.

    Article  CAS  Google Scholar 

  11. A. Jakobsson, Y. Albinsson, Radiochim. Acta, 82 (1998) 257.

    CAS  Google Scholar 

  12. A.-M. Jakobsson, J. Colloid Interface Sci., 220 (1999) 367.

    Article  CAS  Google Scholar 

  13. M. Olsson, A. Jakobsson, Y. Albinsson, J. Colloid Interface Sci., 266 (2003) 269.

    Article  CAS  Google Scholar 

  14. A. Jakobsson, Y. Albinsson, R. Rundberg, Radiochim. Acta, 92 (2004) 683.

    Article  CAS  Google Scholar 

  15. M. Pena, X. Meng, G. Korfiatis, C. Jing, Environ. Sci. Technol., 40 (2006) 1257.

    Article  CAS  Google Scholar 

  16. M. Abe, P. Wang, R. Chitrakar, M. Tsuji, Analyst, 114 (1989) 435.

    Article  CAS  Google Scholar 

  17. K. Pedersen, FEMS Microbiol. Rev., 20 (1997) 399.

    Article  CAS  Google Scholar 

  18. Y. Stiglund, K. Aquilonius, Lake Tranebärssjön: Basic Characteristics and Evaluation of Restoration Options, RESTRAT-TD 13, Studsvik Eco & Safety AB, Nyköping, 1999.

    Google Scholar 

  19. R. E. Hungate, Meth. Microb., 111 (1966) 117.

    Google Scholar 

  20. J. Hobbie, R. Daley, S. Jasper, Appl. Environ. Microbiol., 33 (1977) 1225.

    CAS  Google Scholar 

  21. S. Payne, Methods Enzymol., 235 (1994) 329.

    Article  CAS  Google Scholar 

  22. B. Schwyn, J. Neilands, Anal. Biochem., 160 (1987) 47.

    Article  CAS  Google Scholar 

  23. Y. Albinsson, C. Ekberg, S. Holgersson, A. M. Jakobsson, A. Landgren, G. Skarnemark, Appl. Radiation Isotopes, 56 (2002) 681.

    Article  CAS  Google Scholar 

  24. G. Choppin, J. Rydberg, J. Liljezin, Radiochemistry and Nuclear Chemistry, 2nd ed., Butterworth-Heinemann Ltd., Boston, 1995, p. 707.

    Google Scholar 

  25. B. Kalinowski, A. Johnsson, J. Arlinger, K. Pedersen, A. Ödegaard-Jensen, F. Edberg, Geomicrobiol. J., 23 (2006) 157.

    Article  CAS  Google Scholar 

  26. J. J. Katz, G. T. Seaborg, L. R. Moriss, The Chemistry of the Actinide Elements, Chapman and Hall, New York, 1986, p. 1674.

    Google Scholar 

  27. L. A. Warren, E. A. Haack, Earth-Sci. Rev., 54 (2001) 261.

    Article  CAS  Google Scholar 

  28. Manuscript submitted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Johnsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnsson, A., Ödegaard-Jensen, A., Jakobsson, A.M. et al. Bioligand-mediated partitioning of radionuclides to the aqueous phase. J Radioanal Nucl Chem 277, 637–644 (2008). https://doi.org/10.1007/s10967-007-7067-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-7067-5

Keywords

Navigation