Skip to main content
Log in

Fluctuation in occupancy of Cu2+ ions in Zn- and Cd-substituted Cu-ferrites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Mössbauer effect technique has been used for the comparative study of Cu1−x Zn x Fe2O4 and Cu1−x Cd x Fe2O4 ( x = 0.0−1.0) ferrites. Both Zn2+ and Cd2+ cations are divalent, non-magnetic ions with different ionic radii. With the substitution of these non-magnetic cations the average internal magnetic field decreases and paramagnetic behavior is dominated at x = 0.7 in both series. It is observed that the occupancy of Cu2+ ions for tetrahedral site is not constant for all compositions but fluctuate between 8–15%. It is also found that Cu2+ ions have more preference for tetrahedral site in Cu-Zn system as compared to the Cu-Cd system. Zn2+ and Cd2+ both ions occupy tetrahedral site completely and form normal spinels for x = 1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. U. Rana, Misbah-ul-Islam, Tahir Abbas, Sol. Stat. Commun., 126 (2003) 129.

    Article  CAS  Google Scholar 

  2. See for example: Proc. 3 rd. Intern. Conf. and Business Forum on Polymer Bonded Magnets, Atlanta, GA, April 1996, 1996; Proc. Intern. Symp. on Ferrites, Tokyo, September 1997, 1997; Proc. 6th Intern. Conf. on Ferrites, Tokyo, October 1992, 1992.

  3. G. F. Goya, H. R. Rechenberg, J. Appl. Phys., 84 (1998) 1101.

    Article  CAS  Google Scholar 

  4. R. G. Kulkarni, V. U. Patil, J. Mater. Sci., 17 (1982) 843.

    Article  CAS  Google Scholar 

  5. S. Krupicka, P. Novak, Oxide Spinels (Ferromagnetic Materials) Vol. 3, E. P. Wohlfarth (Ed.) North-Holland, Amsterdam, 1982.

    Google Scholar 

  6. B. J. Evan, S. Hafners, J. Phys. Chem. Solids, 29 (1968) 1573.

    Article  Google Scholar 

  7. E. Prince, R. G. Treuting, Acta Crystallogr., 9 (1956) 1025.

    Article  CAS  Google Scholar 

  8. M. Arshed, N. M. Butt, M. Siddique, M. Anwar-ul-Islam, T. Abbas, M. Ahmed, Sol. Stat. Commun., 84 (1992) 717.

    Article  CAS  Google Scholar 

  9. M. Arshed, M. Siddique, M. Anwar-ul-Islam, N. M. Butt, T. Abbas, M. Ahmed, Sol. Stat. Commun., 93 (1995) 599.

    Article  CAS  Google Scholar 

  10. N. A. Eissa, A. A. Bahgat, M. K. Fayek, J. Phys. F: Metal Phys., 7 (1977) 2209.

    Article  CAS  Google Scholar 

  11. J. M. Daniels, A. Rosencwaig, Can. J. Phys., 48 (1970) 381.

    CAS  Google Scholar 

  12. A. H. Morrish, P. E. Clark, Phys. Rev., B11 (1975) 278.

    Google Scholar 

  13. G. Große, MOS-90, Version 2.2 Manual and Program Documentation, 2nd ed., March 1992.

  14. C. Saragovi-Badler, I. A. Maier, F. Lebenski, Corrosion, 38 (1982) 206.

    CAS  Google Scholar 

  15. P. J. B. Claricoats, Microwave Ferrites, Chapman & Hall Ltd., London 1961.

    Google Scholar 

  16. A. Naarayansamy, L. Haggstron, J. Phys. C. Solid State Phys., 16 (1983) 591.

    Article  Google Scholar 

  17. Seo Wook Paik, Young Bae Lee, Kwang Pyo Chae, Sung Ho Lee, J. Korean Phys. Soc., 34 (1999) 384.

    Google Scholar 

  18. M. Siddique, M. Anwar-ul-Islam, N. M. Butt, T. Abbas, Misbah-ul-Islam, Phys. Stat. Sol., B216 (1999) 1069.

    Google Scholar 

  19. R. F. Sahoo, Theory and Applications of Ferrites, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1960.

    Google Scholar 

  20. T. C. Gibb, Principles of Mossbauer Spectroscopy, Chapman & Hall, London, 1976.

    Google Scholar 

  21. L. K. Leung, B. J. Evans, A. H. Morrish, Phys. Rev., B8, (1973) 29.

    Google Scholar 

  22. A. Goldman, Modern Ferrite Technology, Van Norstrand Reinhold, New York, 1990, p. 145.

    Google Scholar 

  23. R. A. D. Pattrick, G. Van Der Laan, C. Michael, B. Henderson, P. Kuiper, E. Dudzik, D. J. Vaughan, Eur. J. Mineral., 14 (2002) 1095.

    Article  CAS  Google Scholar 

  24. I. S. Ahmed Farag, M. A. Ahmed, S. M. Hammad, A. M. Moustafa, Egypt. J. Sol., 24 (2005) 215.

    Google Scholar 

  25. E. J. W. Verwey, E. L. Heilmann, J. Chem. Phys., 55 (1971) 5282.

    Article  Google Scholar 

  26. J. Smith, H. P. J. Wijn, Ferrites, Wiley, New York, 1959, p. 319.

    Google Scholar 

  27. C. M Srivastava, S. N. Shringi, R. G. Srivastava, Phys. Rev., B14 (1976) 2041.

    Google Scholar 

  28. V. K. Mittal, P. Chandramohan, Santanu Bera, M. P. Srinivasan, S. Velmurugan, S. V. Narasimhan, Sol. Stat. Commun., 137 (2006) 6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Siddique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddique, M., Khan, R.T.A. & Shafi, M. Fluctuation in occupancy of Cu2+ ions in Zn- and Cd-substituted Cu-ferrites. J Radioanal Nucl Chem 277, 531–537 (2008). https://doi.org/10.1007/s10967-007-7048-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-7048-8

Keywords

Navigation