Skip to main content
Log in

Biosorption of 241Am by Saccharomyces cerevisiae: Preliminary investigation on mechanism

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

As an important radioisotope in nuclear industry and other fields, 241Am is one of the most serious contamination concerns due to its high radiation toxicity and long half-life. The encouraging biosorption of 241Am from aqueous solutions by free or immobilized Saccharomyces cerevisiae (S. cerevisiae) has been observed in our previous experiments. In this study, the preliminary evaluation on mechanism was further explored via chemical or biological modification of S. cerevisiae, and using europium as a substitute for americium. The results indicated that the culture times of more than 16 hours for S. cerevisiae was suitable and the efficient adsorption of 241Am by the S. cerevisiae was able to achieve. The pH value in solutions decreased gradually with the uptake of 241Am in the S. cerevisiae, implying that H+ released from S. cerevisiae via ion-exchange. The biosorption of 241Am by the decomposed cell wall, protoplasm or cell membrane of S. cerevisiae was same efficient as by the intact fungus. However, the adsorption ratio for 241Am by the deproteinized or deacylated S. cerevisiae dropped obviously, implying that protein or carboxyl functional groups of S. cerevisiaece play an important role in the biosorption of 241Am. Most of the investigated acidic ions have no significant influence on the 241Am adsorption, while the saturated EDTA can strong inhibit the biosorption of 241Am on S. cerevisiae. When the concentrations of coexistent Eu3+, Nd3+ were 100 times more than that of 241Am, the adsorption ratios would decrease to 65% from more than 95%. It could be noted by transmission electron microscope (TEM) analysis that the adsorbed Eu is almost scattered in the whole fungus, while Rutherford backscattering spectrometry (RBS) analysis indicated that Ca in S. cerevisiae have been replaced by Eu via ion-exchange. All the results implied that the adsorption mechanism of 241Am on S. cerevisiae is very complicated and at least involved in ion exchange, complexation process as well as well as nonspecific adsorption in cell wall because of static electricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Z. Ma, Handbook of Radioactive Isotopes, Science Press, Beijing, 1979, p. 652.

    Google Scholar 

  2. M. Benedict, H. P. Pigford, H. W. Levi, Nuclear Chemical Engineering, 2nd ed., McGraw-Hill Book Comp., Philadelphia, PA, 1981, p. 465.

    Google Scholar 

  3. K. L. A. Nash, Solvent Extr. Ion. Exch., 11 (1993) 729.

    Article  CAS  Google Scholar 

  4. C. Degueldre, A. Bilewicz, W. Hummel, J. L. Loizeau, J. Environ. Radioact., 55 (2001) 241.

    Article  CAS  Google Scholar 

  5. N. A. Wall, M. Borkowski, J. F. Chen, G. R. Choppin, Radiochim. Acta, 90 (2002) 563.

    Article  CAS  Google Scholar 

  6. W. M. Dong, H. X. Zhang, M. D. Huang, Z. Y. Tao, Appl. Radiation Isotopes, 56 (2002) 959.

    Article  CAS  Google Scholar 

  7. Y. J. Zhu, J. F. Chen, G. R. Choppin, Radiochim. Acta, 68 (1995) 95.

    CAS  Google Scholar 

  8. Y. Morita, J. P. Glatz, M. Kubota, Solvent Extr. Ion Exch., 14 (1996) 385.

    Article  CAS  Google Scholar 

  9. G. A. Ye, J. Y. He, Y. Q. Jiang, J. Nucl. Radiochem., 22 (2000) 65.

    CAS  Google Scholar 

  10. N. Liu, S. Z. Luo, Y. Y. Yang, T. M. Zhang, J. N. Jin, J. L. Liao, J. Radioanal. Nucl. Chem., 252 (2002) 187.

    Article  CAS  Google Scholar 

  11. N. Liu, J. L. Liao, S. Z. Luo, Y. Y. Yang, J. N. Jin, T. M. Zhang, P. J. Zhao, J. Radioanal. Nucl. Chem., 258 (2003) 159.

    Article  Google Scholar 

  12. B. Volesky, Biosorption and Biosorbents, in: Biosorption of Heavy Metals, B. Volesky (Ed.), Boca Raton: CRC Press, ISBN0849349176, 1990.

    Google Scholar 

  13. W. Bae, W. Chen, A. Mulchandani, R. K. Mehra, Biotech. Bioeng., 70 (2000) 518.

    Article  CAS  Google Scholar 

  14. N. Hafez, A. S. Abdel-Razek, M. M. Hafez, J. Chem. Tech. Biotechnol., 68 (1997) 19.

    Article  CAS  Google Scholar 

  15. A. Kapoor, T. Virataghavan, Bioreso. Technol., 53 (1995) 195.

    Article  CAS  Google Scholar 

  16. K. F. Reardon, D. C. Mosteller, J. D. B. Rogers, Biotech. Bioeng., 69 (2000) 385.

    Article  CAS  Google Scholar 

  17. T. Horikoshi, A. Nakajima, T. Sakauchi, Eur. J. Appl. Microbiol. Biotechnol., 12 (1981) 90.

    Article  CAS  Google Scholar 

  18. A. Nakajima, T. Sakaguchi, Appl. Microbiol. Biotechnol., 24 (1986) 59.

    CAS  Google Scholar 

  19. M. E. Mullen, D. C. Wolf, F. G. Ferris, Appl. Environ. Microbiol., 12 (1989) 3143.

    Google Scholar 

  20. Z. R. Holan, B. Volesky, I. Prasetyo, Biotech. Bioeng., 41 (1993) 819.

    Article  CAS  Google Scholar 

  21. N. Kuyucak, B. Volesky, Biotech. Lett., 10 (1988) 137.

    Article  CAS  Google Scholar 

  22. G. Q. Wu, X. Li, F. D. Li, X. H. Zhao, Environ Sci., 18 (1997) 47.

    Google Scholar 

  23. W. R. Ross, Water Sci. Tech., 25 (1992) 27.

    CAS  Google Scholar 

  24. M. Tsezos, D. M. Keller, Biotech. Bioeng., 25 (1983) 201.

    Article  CAS  Google Scholar 

  25. N. Friis, P. Myers-Keith, Biotech. Bioeng., 28 (1986) 21.

    Article  CAS  Google Scholar 

  26. A. Nakajima, T. Horikoshi, T. Sakauchi, Eur. J. Appl. Microbiol. Biotechnol., 16 (1982) 88.

    Article  CAS  Google Scholar 

  27. G. M. Gadd, C. White, Biotech. Bioeng., 33 (1988) 592.

    Article  Google Scholar 

  28. M. Tsezos, R. G. L. McCready, J. P. Bell, Biotech. Bioeng., 34 (1989) 10.

    Article  CAS  Google Scholar 

  29. D. Satvatmanesh, F. Siavoshi, M. M. Beitollahi, J. Amidi, N. Fallahian, J. Radioanal. Nucl. Chem., 258 (2003) 483.

    Article  CAS  Google Scholar 

  30. T. Tsuruta, J. General Appl. Microbiol., 49 (2003) 215.

    Article  CAS  Google Scholar 

  31. F. Malekzadeh, A. Farazmand, H. Ghafourian, M. Shahamat, M. Levin, R. R. Colwell, World J. Microbiol. Biotech., 18 (2002) 295.

    Article  CAS  Google Scholar 

  32. A. Ozer, D. Ozer, J. Hazardous Materials, 100 (2003) 219.

    Article  CAS  Google Scholar 

  33. B. Volesky, H. A. May-Philips, Biotechnol. Bioeng., 41 (1993) 826.

    Article  CAS  Google Scholar 

  34. M. Bustard, A. P. Mchale, Bioprocess Eng., 19 (1998) 351.

    Article  CAS  Google Scholar 

  35. B. Volesky, H. A. May-Philips, Appl. Microbiol. Biotechnol., 42 (1995) 797.

    Article  CAS  Google Scholar 

  36. M. Mayer, SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut für Plasmaphysik, Garching, Germany, 1997.

    Google Scholar 

  37. G. Sarrt, A. Manceau, L. Spadini, J. C. Roux, J. L. Hazemann, Y. Soldo, L. Eybert-Berard, J. J. Menthonnex, Environ. Sci. Technol., 32 (1998) 1648.

    Article  Google Scholar 

  38. E. Guibal, C. Roulph, P. L. Cloirek, Environ. Sci. Technol., 29 (1995) 2496.

    Article  CAS  Google Scholar 

  39. E. B. Fourest, B. Volesky, Environ. Sci. Technol., 30 (1996) 277.

    Article  CAS  Google Scholar 

  40. M. M. Figuira, B. Volesky, H. J. Mathieu, Environ. Sci. Technol., 33 (1999) 1840.

    Article  Google Scholar 

  41. N. B. Kuyucak, Biotechnol. Bioeng. 33 (1989) 823.

    Article  CAS  Google Scholar 

  42. A. Kapoor, T. Virataghavan, Bioresource Technol., 61 (1997) 221.

    Article  CAS  Google Scholar 

  43. S. Schiewer, B. Volesky, Environ. Sci. Technol., 30 (1996) 2921.

    Article  CAS  Google Scholar 

  44. M. Hosea, B. Greene, R. Mcpherson, Inorg. Chim. Acta, 123 (1986) 161.

    Article  CAS  Google Scholar 

  45. B. Greene, M. Hosea, R. Mcpherson, M. Henzl, M. D. Alexander, D. W. Darnall, Environ. Sci. Technol., 20 (1986) 627.

    Article  CAS  Google Scholar 

  46. J. D. Holmesolmes, D. J. Richardson, S. Saed, R. Evansgowing, Microbiology, UK143(81) (1997) 2521.

    Article  Google Scholar 

  47. S. Schiewer, J. Appl. Phsycology, 11 (1999) 79.

    Article  CAS  Google Scholar 

  48. R. Ashkenazy, L. Gottlieb, S. Yannai, Biotechnol. Bioeng., 55 (1997) 1.

    Article  CAS  Google Scholar 

  49. G. W. Strandberg, S. E. Shumate, J. R. Parrot, Appl. Environ. Micro., 41 (1981) 237.

    CAS  Google Scholar 

  50. M. Tsezos, B. Volesky, Biotech. Bioeng., 24 (1982) 385.

    Article  CAS  Google Scholar 

  51. T. Ohnuki, F. Sakamoto, N. Kozai, T. Ozaki, I. Narumi, A. J. Francis, H. Iefujih, T. Sakai, T. Kamiya, T. Satoh, M. Oikawa, Nucl. Instr. Meth., B210 (2003) 378.

    Google Scholar 

  52. M. Merroun, C. Henning, A. Rossberg, S. Selenska-Pobell, Radiochim. Acta, 91 (2003) 583.

    Article  CAS  Google Scholar 

  53. J. L. Gardea-Torrsday, K. J. Tiemann, J. R. Peralta-Videa, J. G. Paeron, M. Delgado, Microchem. J., 76 (2004) 65.

    Article  CAS  Google Scholar 

  54. G. Sarret, A. Manceau, L. Spadini, J. C. Roux, J. L. Hazemann, Y. Soldo, L. Eybent-Berard, J. J. Menthonnex, J. Synchron Radiat., 6 (1999) 414.

    Article  CAS  Google Scholar 

  55. M. E. Romero-Gonzalez, C. J. Williams, P. H. E. Gardiner, S. J. Gurman, S. Habesh, Environ. Sci. Technol., 37 (2003) 4163.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, N., Liao, J., Yang, Y. et al. Biosorption of 241Am by Saccharomyces cerevisiae: Preliminary investigation on mechanism. J Radioanal Nucl Chem 275, 173–180 (2008). https://doi.org/10.1007/s10967-007-6996-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-6996-3

Keywords

Navigation