Skip to main content
Log in

Effects of hydroxyl radicals generated from the depleted uranium-hydrogen peroxide systems

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A complementary study of hydroxyl radical formation in the depleted uranium (DU)-hydrogen peroxide (H2O2) system and the effect of biosubstances on the system were examined using the spin-trapping method. Hydroxyl radical was formed in the uranyl ion (UO2 2+), 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), and hydrogen peroxide (H2O2) mixture solution. The pseudo first order rate constants of DMPO-OH formation were estimated to be 0.033 s−1 for UO2 2+-H2O2-DMPO solution and 0.153 s−1 for UO2+-H2O2-DMPO solution. The obtained results indicated that the hydroxyl radical formation in the UO2 2+-H2O2 solution could be described as a stepwise reaction process including the reduction of UO2 2+ to UO2 2+ by H2O2 and the Fenton-type reaction of UO2 + with H2O2. Biosubstances, such as proteins, amino acids and saccharides, decreased the DMPO-OH formation, which was caused by the direct hydroxyl radical scavenging and the suppression of hydroxyl radical formation by coupling with uranyl ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. European Commission. The Opinion of the Group of Experts Established According to Article 31 of the Euratom Treaty. Depleted Uranium, European Commission, Directorate-General Environment, Directorate C-Nuclear Safety and Civil Protection, ENV.C4-Radiation Protection, 2001.

  2. L. Friberg, G. F. Nordberg, V. B. Vouk (Eds). Handbook on the Toxicology of Metals, Vol. II, 2nd ed., Specific Metals, Elsevier, Amsterdam, 1986.

    Google Scholar 

  3. H. C. Hodge, J. N. Stannard, J. B. Hursh, Handbook of Experimental Pharmacology, Vol. 36, Uranium, Plutonium, Transplutonium Elements, Springer-Verlag, New York, 1973.

    Google Scholar 

  4. L. J. Leach, C. L. Yuile, H. C. Hodge, G. E. Sylvester, H. B. Wilson, Health Phys., 25 (1973) 230.

    Google Scholar 

  5. M. M. Hamilton, J. W. Ejnik, A. J. Carmichael, J. Chem. Soc., Perkin Transaction, (1997) 2491.

  6. A. C. Miller, M. Stewart, K. Brooks, L. Shi, N. Page, J. Inorg. Biochem., 91 (2002) 246.

    Article  CAS  Google Scholar 

  7. M. Yazzie, S. L. Gamble, E. R. Civitello, D. M. Stearns, Chem. Res. Toxicol., 16 (2002) 524.

    Article  Google Scholar 

  8. A. Nakajima, Y. Ueda, N. Endoh, K. Tajima, K. Makino, Can. J. Chem., 83 (2005) 1178.

    Article  CAS  Google Scholar 

  9. S. B. Savvin, Talanta, 8 (1961) 673.

    Article  CAS  Google Scholar 

  10. J. J. Katz, G. T. Seaborg, L. R. Morss, The Chemistry of the Actinide Elements, Vol. 1, Chapman & Hall, London, New York, 1986, Chap. 5.

    Google Scholar 

  11. K. Motojima, T. Yamamoto, Y. Kato, Bunseki Kagaku, 18 (1969) 208.

    CAS  Google Scholar 

  12. E. Finkelstein, G. M. Rosen, E. J. Rauckman, J. Am. Chem. Soc., 102 (1980) 4994.

    Article  CAS  Google Scholar 

  13. K. P. Madden, H. Taniguchi, Free Rad. Biol. Med., 30 (2001) 1374.

    Article  CAS  Google Scholar 

  14. A. Nakajima, T. Sakaguchi, J. Chem. Tech. Biotechnol., 47 (1990) 31.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakajima, A., Ueda, Y. Effects of hydroxyl radicals generated from the depleted uranium-hydrogen peroxide systems. J Radioanal Nucl Chem 272, 251–255 (2007). https://doi.org/10.1007/s10967-007-0510-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-007-0510-9

Keywords

Navigation