Skip to main content
Log in

Neutron activation analysis and natural radioactivity measurements of lignite and ashes from Megalopolis basin, Greece

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Elemental concentrations and specific activity values of natural radionuclides were measured in lignite, bottom ash and fly ash samples collected from the Megalopolis power plant A in southern Greece, using nuclear analytical techniques. The results show that the elements As, Br, Mo, Sb, Se, and U were enriched in the lignite samples, the elements Mo, Se and U in bottom ash, while fly ash samples were enriched in As, Mo, Sb, Se and U. Specific activity measurements also show that 238U (226Ra) activity values in lignite and both ash samples were high relative to the corresponding data for coal and earth crust given in the literature. As a high quantity of fly ash is produced during the operation of the lignite power plant A, this power plant should be considered as a major source of air particulate pollution and radiation to the population living in the vicinity of lignite burning power plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Swaine, Trace Elements in Coal, Butterworths, London, 1990.

    Google Scholar 

  2. L. B. Clarke, Sloss , Trace Elements — Emissions from Coal Combustion and Gasification, IEA Coal Research, IEACR/49, London, 1992.

  3. G. A. Norton, K. L. Malaby, E. L. Dekalb, Environ. Sci. Technol., 22 (1988) 1279.

    Article  CAS  Google Scholar 

  4. R. D. Smith, J. A. Cambell, K. K. Nielson, Atmos. Environ., 13 (1979) 607.

    Article  CAS  Google Scholar 

  5. M. Manolopoulou, C. Papastefanou, J. Environ. Radioact., 16 (1992) 261.

    Article  CAS  Google Scholar 

  6. I. Bogdanović, S. Fazinić, S. Itskos, M. Jaksić, E. Karydas, V. Katselis, T. Paradellis, T. Tadić, O. Valković, V. Valcović, Nucl. Instr. Meth., B99 (1995) 402.

    Google Scholar 

  7. W. S. Seams, J. O. L. Wendt, Adv. Environ. Res., 4 (2000) 45.

    Google Scholar 

  8. A. Arditsoglou, Ch. Petaloti, E. Terzi, M. Sofoniou, C. Samara, Sci. Total Environ., 323 (2004) 153.

    Article  CAS  Google Scholar 

  9. B. J. Finlayson-Pitts, J. N. Pitts Jr., Chemistry of the Upper and Lower Atmosphere, Academic Press, 2000, p. 22.

  10. M. Xu, R. Yan, C. Zheng, Y. Qiao, J. Han, C. Sheng, Fuel Process. Technol., 85 (2003) 215.

    Article  Google Scholar 

  11. H. Papaefthymiou, P. Kritidis, J. Anousis, J. Sarafidou, J. Environ. Radioact., 78 (2005) 249.

    Article  CAS  Google Scholar 

  12. H. Papaefthymiou, J. Anousis, J. Radioanal. Nucl. Chem., in press.

  13. V. Sakorafa, K. Michailidis, F. Burragato, Fuel, 75 (1996) 419.

    Article  CAS  Google Scholar 

  14. IAEA, TECDOC-435, Vienna, 1987.

  15. W. D. Ehmann, S. W. Yates, Anal. Chem., 60 (1988) 42R.

    Article  CAS  Google Scholar 

  16. J. Al-Jundi, Nucl. Instr. Meth., B170 (2000) 180.

    Google Scholar 

  17. E. Steinnes, J. Radioanal. Nucl. Chem., 243 (2000) 235.

    Article  CAS  Google Scholar 

  18. S. Landsberger, Chem. Geol. 57 (1986) 415.

    Article  CAS  Google Scholar 

  19. P. N. Dimotakis, H. Papaefthymiou, A. Sringer, L. Goetz, J. Radioanal. Nucl. Chem., 127 (1988) 133.

    Article  CAS  Google Scholar 

  20. A. Georgakopoulos, A. Filippidis, A. Kassoli-Fournaraki, A. Iordanidis, J.-L. Fernandez-Turiel, J.-F. Llorens, D. Gimeno, Energy Sources, 24 (2002) 83.

    Article  CAS  Google Scholar 

  21. S. R. Taylor, Geochim. Cosmochim. Acta, 28 (1972) 1273.

    Article  Google Scholar 

  22. IAEA, Sampling and Analytical Methodologies for Instrumental Neutron Activation Analysis of Airborne Particulate Matter, Training Course Series, No. 4, 1992.

  23. X. Querol, T. J. L. Fernandez, S. A. Lopez, Fuel, 74 (1995) 331.

    Article  CAS  Google Scholar 

  24. W. P. Linak, J. O. L. Wendt, Fuel Process. Technol., 39 (1994) 173.

    Article  CAS  Google Scholar 

  25. W. Maenhaut, O. Royset, M. Vadset, E. I. Kauppinen, T. M. Lind, Nucl. Instr. Meth., B75 (1993) 266.

    CAS  Google Scholar 

  26. C. L. Senior, T. Zeng, J. Che, M. R. Ames, A. F. Sarofim, I. Olmez, F. E. Huggins, N. Shah, G. P. Huffman, A. Kolker, S. Mroczkowski, C. Palmer, R. Finkelman, Fuel Process. Technol., 63 (2000) 215.

    Article  CAS  Google Scholar 

  27. R. B. Finkelman, Fuel Process. Technol., 39 (1994) 21.

    Article  CAS  Google Scholar 

  28. UNSCEAR, Ionizing Radiation: Sources and Biological Effects, United Nations Scientific Committee on the Effects of Atomic Radiation, Report to the General Assembly with Annexes, United Nations, New York, 1982.

    Google Scholar 

  29. UNSCEAR, Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the Effects of Atomic Radiation. Report to the General Assembly with Scientific Annexes, United Nations, New York, Vol. I: Sources, 2000.

  30. D. G. Coles, R. C. Ragaini, J. M. Ondov, Environ. Sci. Technol., 12 (1978) 442.

    Article  CAS  Google Scholar 

  31. S. E. Simopoulos, M. G. Angelopoulos, J. Environ. Radioact., 5 (1987) 379.

    Article  CAS  Google Scholar 

  32. C. Papastefanou, St. Charalambous, Z. Naturforsch., 34a (1979) 533.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papaefthymiou, H., Symeopoulos, B.D. & Soupioni, M. Neutron activation analysis and natural radioactivity measurements of lignite and ashes from Megalopolis basin, Greece. J Radioanal Nucl Chem 274, 123–130 (2007). https://doi.org/10.1007/s10967-006-6880-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-006-6880-6

Keywords

Navigation