Journal of Radioanalytical and Nuclear Chemistry

, Volume 262, Issue 3, pp 713–719 | Cite as

EDXRF as an analytical tool in art: Case studies from pigment identification and treatment assessment

  • N. Kallithrakas-KontosEmail author
  • P. Maravelaki-Kalaitzaki


Energy dispersive X-ray fluorescence (EDXRF) was employed for the identification of pigments decorating Hellenistic figurines, and the assessment of the efficiency of a treatment with barium hydroxide applied to stone. Elements present in the colored areas of the figurines, as well as the treated stone was identified by EDXRF. These data together with complementary information obtained by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) led to the identification of several precious pigments. As far as the treatment efficiency is concerned, EDXRF analysis revealed that barium is unevenly distributed on the treated surface and reaches a maximum depth of 2.5 mm.


Fourier Transform Fourier Transform Infrared Spectroscopy Barium Infrared Spectroscopy Analytical Tool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Mantler, M. Schreiner, J. Radioanal. Nucl. Chem., 247 (2001) 635.Google Scholar
  2. 2.
    Special Millennium Issue on Cultural Heritage, X-ray Spectrom., 29 (2000).Google Scholar
  3. 3.
    P. Leutenegger, A. Longoni, C. Fiorini, L. Studer, J. Kemmer, P. Lechner, S. Sciuti, R. Cesareo, Nucl. Instr. Meth. Phys. Res., A439 (2000) 458.Google Scholar
  4. 4.
    M. Ferretti, G. Guidi, P. Moioli, R. Scafe, C. Seccaronni, Stud. Conserv., 36 (1991) 235.Google Scholar
  5. 5.
    J. L. Ferrero, C. Roldan, M. Ardid, E. Navarro, Nucl. Instr. Meth. Phys. Res., A422 (1999) 868.Google Scholar
  6. 6.
    T. Cechak, J. Gerndt, L. Musĺlek, I. Kopecka, Radiat. Phys. Chem., 61 (2001) 717.Google Scholar
  7. 7.
    M. Mantler, M. Schreiner, X-ray Spectrom., 29 (2000) 3.Google Scholar
  8. 8.
    E. Aloupi, A. G. Karydas, T. Paradellis, X-ray Spectrom., 29 (2000) 18.Google Scholar
  9. 9.
    R. Klockenkämper, M. Becker, H. Otto, Spectrochim. Acta, B45 (1990) 1043.Google Scholar
  10. 10.
    P. L. Leung, Hongjie Luo, X-ray Spectrom., 29 (2000) 34.Google Scholar
  11. 11.
    J. L. Ferrero, C. Roldan, D. Juanes, E. Rollano, C. Morera, X-ray Spectrom., 31 (2002) 441.Google Scholar
  12. 12.
    R. Cesareo, A. Castellano, G. Buccolieri, S. Quarta, M. Marabelli, P. Santopadre, 7th Intern. Conf. on Non-Destructive Testing and Microanalysis for the Diagnostics and Conservation of Cultural and Environmental Heritage, Antwerp, Belgium, 2002, Book of Extended Abstracts, p. 13.Google Scholar
  13. 13.
    S. Bichlmeier, K. Janssens, J. Heckel, D. Gibson, P. Hoffmann, H. M. Ortner, X-ray Spectrom., 30 (2001) 8.Google Scholar
  14. 14.
    R. Klockenkämper, A. Von Bohlen, L. Moens, X-ray Spectrom., 29 (2000) 119.Google Scholar
  15. 15.
    S. Z. Lewin, N. S. Baer, Stud. Conserv., 19 (1974) 24.Google Scholar
  16. 16.
    S. Markoulaki, V. Niniou-Kindeli, Archaeol. Bull., 37 (1990) 7.Google Scholar
  17. 17.
    P. Maravelaki-Kalaitzaki, N. Kallithrakas-Kontos, Anal. Chim. Acta, 497 (2003) 209.Google Scholar
  18. 18.
    V. C. Farmer, Infrared Spectra of Minerals, Mineralogical Society, London, 1974, p. 331.Google Scholar
  19. 19.
    R. G. Milkey, Am. Mineral., 45 (2003) 990.Google Scholar
  20. 20.
    P. Mirti, L. Appolonia, A. Casoli, R. P. Ferrari, E. Laurenti, A. Amisano, A. Canesi, G. Chiari, Spectrochim. Acta, 51A (1995) 437.Google Scholar
  21. 21.
    S. Bruni, F. Cariati, F. Casadio, L. Toniolo, Vib. Spectr., 20 (1999) 15.Google Scholar
  22. 22.
    L. J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman & Hall, London, 1975, p. 375.Google Scholar
  23. 23.
    J. Winter, Stud. Conserv., 28 (1983) 49.Google Scholar
  24. 24.
    D. S. Reese, Ann. Br. Sch. Athens, 82 (1987) 201.Google Scholar
  25. 25.
    M. Andreadaki-Vlazaki, AD Chronika, 2004, in press.Google Scholar
  26. 26.
    P. E. Mcgovern, R. H. Michel, Acc. Chem. Res., 23 (1990) 152.Google Scholar
  27. 27.
    R. J. H. Clark, C. J. Cooksey, New J. Chem., 1 (1999) 323.Google Scholar
  28. 28.
    J. Riederer, Archaeometry, 16 (1974) 102.Google Scholar
  29. 29.
    L. Leroux, V. Verges-Belmin, D. Costa, J. Delgado Rodrigues, P. Tiano, R. Snethlage, B. Singer, S. Massey, E. De Witte, 9th Intern. Congress on Deterioration and Conservation of Stone, V. Fassina (Ed.), Elsevier, Venice, 2000, p. 361.Google Scholar
  30. 30.
    P. Maravelaki-Kalaitzaki, N. Kallithrakas-Kontos, Science and Cultural Heritage, Vol. XIX, Reversibility in Restorations: Thoughts, Experiences, Research Routes, Arcadia Ricerche, Venice, 2003, p. 307.Google Scholar
  31. 31.
    C. A. Price, Stone Conservation, An Overview of Current Research, The Getty Conservation Institute, Santa Monica, 1996, p. 25.Google Scholar

Copyright information

© Akadémiai Kiadó 2004

Authors and Affiliations

  • N. Kallithrakas-Kontos
    • 1
    Email author
  • P. Maravelaki-Kalaitzaki
    • 2
  1. 1.Technical University of Crete, Analytical and Environmental Chemistry Laboratory, University CampusChaniaGreece
  2. 2.25th Ephorate of Prehistoric and Classical AntiquitiesMinistry of CultureChaniaGreece

Personalised recommendations