Skip to main content
Log in

Enhancing the toughness of poly(lactic acid) with a novel, highly flexible and biodegradable polyester: poly(ethylene adipate-co-terephthalate) terephthalate

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

As a typical biodegradable material, poly(lactic acid) (PLA) has great development potential in fields such as packaging, textiles and biomedical applications due to its high modulus and strength as well as excellent biocompatibility. However, the inherent brittleness and poor toughness of PLA significantly limit its widespread application. In this study, a biodegradable aliphatic–aromatic copolyester called poly(ethylene adipate-co-terephthalate) (PEAT) was synthesized using the industrially well-established direct esterification method. PEAT demonstrated excellent flexibility and extremely high fracture elongation. Its fracture elongation exceeded 900%, making it a highly ductile material with exceptional toughness. Given the complementary nature of PLA and PEAT, blending PLA with PEAT becomes a natural choice for improving the performance of PLA. The influence of the addition of PEAT on the mechanical properties, thermal performance, crystallization, phase morphology and rheological behavior of the blends was thoroughly investigated. With the addition of PEAT, the fracture mode changed from brittle fracture of the neat PLA to ductile fracture of the blends as illustrated by tensile test. The best toughening effect on PLA was achieved at a PEAT content of 30 wt%, with the elongation at break increasing from 6.7% for neat PLA to 359% for the binary blend, an improvement of 53 times. Additionally, the impact strength also increased from 4.4 kJ/m2 to 10.5 kJ/m2, an increase of 138%. DSC revealed that PEAT had a certain influence on the crystallization behavior of PLA. SEM showed that the PEAT toughening mechanism was primarily attributed to a shear yielding mechanism triggered by debonding cavitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Author elects to not share data.

References

  1. Gonzalez-Lopez ME, De Jesus Calva-Estrada S, Gradilla-Hernandez MS, Barajas-Alvarez P (2023) Current trends in biopolymers for food packaging: a review. Front Sustainable Food Syst. https://doi.org/10.3389/fsufs.2023.1225371

    Article  Google Scholar 

  2. Wang X, Pan H, Jia S, Wang Z, Tian H, Han L, Zhang H (2022) In-situ reaction compatibilization modification of poly(butylene succinate-co-terepht-halate)/polylactide acid blend films by multifunctional epoxy compound. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.06.026

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mukherjee C, Varghese D, Krishna JS, Boominathan T, Rakeshkumar R, Dineshkumar S, Brahmananda Rao CVS, Sivaramakrishna A (2023) Recent advances in biodegradable polymers-properties, applications and future pros-pects. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2023.112068

    Article  Google Scholar 

  4. Xu P-Y, Wang P-L, Liu T-Y, Zhen Z-C, Lu B, Huang D, Wang G-X, Ji J-H (2023) All-natural environmentally degradable poly(butylene terephthalat-e-co-caprolactone): a theoretical and experimental study of its degradation properties and mechanisms. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2023.165980

    Article  PubMed  PubMed Central  Google Scholar 

  5. Petkoska AT, Daniloski D, Cunha NMD, Naumovski N, Broach AT (2021) Edible packaging: sustainable solutions and novel trends in food packaging. Food Res Int. https://doi.org/10.1016/j.foodres.2020.109981

    Article  Google Scholar 

  6. Kristine VA (2023) Polysaccharides for biodegradable packaging materials: past, present, and future (brief review). Polymers. https://doi.org/10.3390/polym15020451

    Article  Google Scholar 

  7. Chan Q-H, Alias SA, Quek SW, Ng CY, Marsilla KIK (2023) A review of the preparations, properties, and applications of smart biodegradable polymers. Polym-Plast Tech Mat. https://doi.org/10.1080/25740881.2023.2204954

    Article  Google Scholar 

  8. Momeni S, Craplewe K, Safder M, Luz S, Sauvageau D, Elias A (2023) Accelerating the biodegradation of poly(lactic acid) through the inclusion o-f plant fibers: a review of recent advances. Acs Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.3c04240

    Article  PubMed  Google Scholar 

  9. Coltelli M-B, Aliotta L, Fasano G, Miketa F, Brkić F, Alonso R, Romei M, Cinelli P, Canesi I, Gigante V, Lazzeri A (2023) Recyclability studies on poly(lactic acid)/poly(butylene succinate-co-adipate) (PLA/PBSA) biobase-d and biodegradable films. Macromol Mater Eng. https://doi.org/10.1002/mame.202300136

    Article  Google Scholar 

  10. Yang R, Cai C, Han X, Chen Z, Gu G, Zhang C, Zou G, Li J (2023) S-upertough and biodegradable poly(lactic acid) blends with hard-soft core-shell unsaturated poly(ether-ester) through self-vulcanization. Macromolecules. https://doi.org/10.1021/acs.macromol.3c01126

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen K, Zhou C, Yao L, Jing M, Liu C, Shen C, Wang Y (2023) Phase morphology, rheological behavior and mechanical properties of supertough biobased poly(lactic acid) reactive ternary blends. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2023.127079

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gomez-Caturla J, Tejada-Oliveros R, Ivorra-Martinez J, Garcia-Sanoguera D, Balart R, Garcia-Garcia D (2023) Development and characterization of new environmentally friendly polylactide formulations with terpenoid-based plasticizers with improved ductility. J Polym Environ. https://doi.org/10.1007/s10924-023-03000-y

    Article  Google Scholar 

  13. Ming M, Zhou Y, Wang L, Zhou F, Zhang Y (2022) Effect of polycarbodiimide on the structure and mechanical properties of PLA/PBAT blends. J Polym Res Https. https://doi.org/10.1007/s10965-022-03227-8

    Article  Google Scholar 

  14. Chen Y, Zhang J, Zhang Y, Cao W, Liu X, Bao J, Zhang X, Chen W (2023) Poly(l-lactide)-b-poly(ε-caprolactone)-b-poly(d,l-lactide) copolymers with enhanced toughness and strength by regulating crystallization and phase separation. J Polym Sci. https://doi.org/10.1002/pol.20230425

    Article  Google Scholar 

  15. Wang G, Zhang L, Chi X (2023) Ductile poly(lactic acid)-based blends de-rived from poly(butylene succinate-co-butylene 2,5-thiophenedicarboxylate): structures and properties. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2023.123702

    Article  PubMed  PubMed Central  Google Scholar 

  16. Duan K, Zhen W (2019) The synthesis of poly(lactic acid)-fulvic acid graft polymer and its effect on the crystallization and performance of poly(lactic acid). Polym-Plast Tech Mat. https://doi.org/10.1080/25740881.2019.1587768

    Article  Google Scholar 

  17. Musa L, Kumar NK, Abd Rahim SZ, Mohamad Rasidi MS, Watson Rennie AE, Rahman R, Kanani AU, Azrem Azmi A (2022) A review on the p-otential of polylactic acid based thermoplastic elastomer as filament materi-Al for fused deposition modelling. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2022.08.057

    Article  Google Scholar 

  18. Farsetti S, Cioni B, Lazzeri A (2011) Physico-mechanical properties of bio-degradable rubber toughened polymers. Macromol Symp. https://doi.org/10.1002/masy.201150311

    Article  Google Scholar 

  19. Jiang L, Wolcott MP, Zhang JW (2006) Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol. https://doi.org/10.1021/bm050581q

    Article  Google Scholar 

  20. Deng Y, Yu C, Wongwiwattana P, Thomas NL (2018) Optimising ductility of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends through co-continuous phase morphology. J Polym Environ. https://doi.org/10.1007/s10924-018-1256-x

    Article  Google Scholar 

  21. Diao X, Zhang C, Weng Y (2022) Properties and degradability of poly(butylene adipate-co-terephthalate)/calcium carbonate films modified by polyethylene glycol. Polymers. https://doi.org/10.3390/polym14030484

    Article  PubMed  PubMed Central  Google Scholar 

  22. De Matos Costa AR, Crocitti A, Hecker De Carvalho L, Carroccio SC, Cerruti P, Santagata G (2020) Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-co-terephthalate) (PBAT) blends. Polymers. https://doi.org/10.3390/polym12102317

    Article  PubMed  PubMed Central  Google Scholar 

  23. Letwaba J, Muniyasamy S, Lekalakala R, Mavhungu L, Mbaya R (2024) Design of compostable toughened PLA/PBAT blend with algae via reactive compatibilization: the effect of algae content on mechanical and thermal properties of bio-composites. J Appl Polym Sci. https://doi.org/10.1002/app.55204

    Article  Google Scholar 

  24. Jia S-L, Wang X-Y, Zhang Y, Yan X, Pan H, Zhan Y, Han L, Zhang H, Dong L (2023) Superior toughened biodegradable poly(l-lactic acid)-based blends with enhanced melt strength and excellent low-temperature toughness via in situ reaction compatibilization. Chin J Polym Sci. https://doi.org/10.1007/s10118-022-2862-6

    Article  Google Scholar 

  25. Muthuraj R, Misra M, Mohanty AK (2014) Biodegradable poly(butylene succinate) and poly(butylene adipate-co-terephthalate) blends: reactive extrusion and performance evaluation. J Poly Environ. https://doi.org/10.1007/s10924-013-0636-5

    Article  Google Scholar 

  26. Wang X, Peng S, Chen H, Yu X, Zhao X (2019) Mechanical properties, r-heological behaviors, and phase morphologies of high-toughness PLA/PBAT blends by in-situ reactive compatibilization. Compos Part B-eng. https://doi.org/10.1016/j.compositesb.2019.107028

    Article  Google Scholar 

  27. Wu F, Misra M, Mohanty AK (2020) Sustainable green composites from b-iodegradable plastics blend and natural fibre with balanced performance: synergy of nano-structured blend and reactive extrusion. Compos Sci Technol. https://doi.org/10.1016/j.compscitech.2020.108369

    Article  Google Scholar 

  28. Li Y, Han C, Xiao L, Yu Y, Zhou G, Xu M (2021) Miscibility, morphology, and properties of poly(butylene succinate)/poly(vinyl acetate) blends. Colloid Polym Sci. https://doi.org/10.1007/s00396-020-04773-7

    Article  Google Scholar 

  29. Ma F, Wang B, Leng X, Wang Y, Sun Z, Wang P, Sang L, Wei Z (2022) Biodegradable PBAT/PLA/CaCO3 blowing films with enhanced mechanical and barrier properties: investigation of size and content of CaCO3 particles. Macromo Mater Eng. https://doi.org/10.1002/mame.202200135

    Article  Google Scholar 

  30. Li K, Peng J, Turng L-S, Huang H-X (2011) Dynamic rheological behavior and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios. Adv Polym Tech. https://doi.org/10.1002/adv.20212

    Article  Google Scholar 

  31. Ding Y, Lu B, Wang P, Wang G, Ji J (2017) PLA-PBAT-PLA tri-block co-polymers: effective compatibilizers for promotion of the mechanical and r-heological properties of PLA/PBAT blends. Polym Degrad Stabil. https://doi.org/10.1016/j.polymdegradstab.2017.11.012

  32. Jiang G, Wang F, Zhang S, Huang H (2020) Structure and improved properties of PPC/PBAT blends via controlling phase morphology based on melt viscosity. J Appl Polym Sci. https://doi.org/10.1002/app.48924

    Article  Google Scholar 

  33. Jiang L, Wolcott MP, Zhang J (2006) Study of biodegradable polylactide/p-oly(butylene adipate-co-terephthalate) blends. Biomacromol. https://doi.org/10.1021/bm050581q

    Article  Google Scholar 

  34. Teamsinsungvon A, Ruksakulpiwat Y, Jarukumjorn K (2013) Preparation an-d characterization of poly(lactic acid)/poly(butylene adipate-co-terepthalate) blends and their composite. Polym-Plast Tech Mat. https://doi.org/10.1080/03602559.2013.820746

    Article  Google Scholar 

  35. Li W, Sun C, Li C, Xu Y, Tan H, Zhang Y (2021) Preparation of effective ultraviolet shielding poly(lactic acid)/poly(butylene adipate-co-terephthalate) degradable composite film using co-precipitation and hot-pressing method. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.09.097

    Article  PubMed  PubMed Central  Google Scholar 

  36. Li X, Yan X, Yang J, Pan H, Gao G, Zhang H, Dong L (2018) Improvement of compatibility and mechanical properties of the poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends and films by reactive extrusion with chain extender. Polym Eng Sci. https://doi.org/10.1002/pen.24795

    Article  Google Scholar 

  37. Rowland HD, King WP, Pethica JB, Cross GLW (2008) Molecular confin-ement accelerates deformation of entangled polymers during squeeze flow. Sci. https://doi.org/10.1126/science.1157945

    Article  Google Scholar 

  38. Si L, Massa MV, Dalnoki-Veress K, Brown HR, Jones RAL (2005) Chain entanglement in thinfreestanding polymer films. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.94.127801

    Article  PubMed  Google Scholar 

  39. Zhang N, Wang Q, Ren J, Wang L (2009) Preparation and properties of b-iodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci. https://doi.org/10.1007/s10853-008-3049-4

    Article  Google Scholar 

  40. Kishi H, Shi YB, Huang J, Yee AF (1998) Ductility and toughenability St-Udy of epoxy resins under multiaxial stress states. J Mater Sci. https://doi.org/10.1023/A:1013222421843

    Article  Google Scholar 

  41. Ritchie RO (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int J Fract. https://doi.org/10.1023/A:1018655917051

    Article  Google Scholar 

  42. Jiang L, Liu B, Zhang J (2009) Properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/nanoparticle ternary composites. Ind Eng Chem Res. https://doi.org/10.1021/ie900576f

    Article  Google Scholar 

  43. Huang Q, Hiyama M, Kabe T, Kimura S, Iwata T (2020) Enzymatic self-biodegradation of poly(l-lactic acid) films by embedded heat-treated and im-mobilized proteinase k. Biomacromol. https://doi.org/10.1021/acs.biomac.0c00759

    Article  Google Scholar 

  44. Zhang SJ, Tang YW, Cheng LH (2013) Biodegradation behavior of PLA/PBS blends. AMR. https://doi.org/10.4028/www.scientific.net/amr.821-822.937

    Article  PubMed  Google Scholar 

  45. Chai X, He C, Liu Y, Niyitanga E, Wang L, Zhang W (2023) Degradation of wheat straw/polylactic acid composites with and without sodium alginate in natural soil and the effects on soil microorganisms. J Appl Polym Sci. https://doi.org/10.1002/app.53447

    Article  Google Scholar 

  46. Ali SS, Elsamahy T, Al-Tohamy R, Zhu D, Mahmoud Y, Koutra E, Metwally M, Kornaros M, Sun J (2021) Plastic wastes biodegradation: Mechanis-ms, challenges and future prospects. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146590

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by The Key Laboratory of Advanced Polymeric Materials of Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meidong Lang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 106 KB)

Supplementary file2 (DOCX 342 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., He, Z., Yin, W. et al. Enhancing the toughness of poly(lactic acid) with a novel, highly flexible and biodegradable polyester: poly(ethylene adipate-co-terephthalate) terephthalate. J Polym Res 31, 151 (2024). https://doi.org/10.1007/s10965-024-03992-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03992-8

Keywords

Navigation