Skip to main content
Log in

Effect of the composition and electrospinning time of gelatin solutions in acetic acid on their rheological properties and nanofiber morphology

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The work studied the effect of structuring of gelatin solution with a different content of acetic acid on the stability of electrospinning process and obtained nanofibers morphology. Using the method of dynamic light scattering and analysis using the Arrhenius equation, it was found that the process of formation of gelatin sol is thermally activated, and the activation energy of the process increases from 70.2 to 102.2 kJ/mol with the introduction of 10 vol.% acetic acid. Using dynamic mechanical analysis of viscoelastic properties, it was found that when the solution concentration is more than 15 wt.% in the presence of 10 vol.% acid, a structure of the solution close to a gel is formed. It has also been shown that as the fraction of acid increases to 25 vol.% and higher solutions are characterized by a sol state with an increase in the elastic component after 24 h of solution settling. It was found that the structuring of the solution during settling affects the stability of electrospinning. Statistical analysis of the morphology of gelatin nanofibers showed that with an acid content of 25 vol.% the average diameter of nanofibers increases by 2 times during settling of 24 h. When using an acetic acid content in a gelatin solution of more than 50 vol.%, a significant increase in the stability of the electrospinning process and in the average diameter of nanofibers were observed, regardless of the settling time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Stevens KR, Einerson NJ, Burmania JA, Kao WJ (2002) In vivo biocompatibility of gelatin-based hydrogels and interpenetrating networks. J Biomater Sci Polym Ed 13:1353–1366. https://doi.org/10.1163/15685620260449741

    Article  CAS  PubMed  Google Scholar 

  2. Nagarajan S, Soussan L, Bechelany M et al (2016) Novel biocompatible electrospun gelatin fiber mats with antibiotic drug delivery properties. J Mater Chem B 4:1134–1141. https://doi.org/10.1039/c5tb01897h

    Article  CAS  PubMed  Google Scholar 

  3. Voron’ko NG, Derkach SR, Kuchina YA, Sokolan NI, (2016) The chitosan-gelatin (bio)polyelectrolyte complexes formation in an acidic medium. Carbohydr Polym 138:265–272. https://doi.org/10.1016/j.carbpol.2015.11.059

    Article  CAS  PubMed  Google Scholar 

  4. Qiao C, Zhang J, Ma X et al (2018) Effect of salt on the coil-helix transition of gelatin at early stages: optical rotation, rheology and DSC studies. Int J Biol Macromol 107:1074–1079. https://doi.org/10.1016/j.ijbiomac.2017.09.079

    Article  CAS  PubMed  Google Scholar 

  5. Gorgieva s, Kokol v (2011) Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. In: Biomaterials applications for nanomedicine. pp 17–53

    Google Scholar 

  6. Bello AB, Kim D, Kim D et al (2020) Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng B Rev 26:164–180. https://doi.org/10.1089/ten.teb.2019.0256

    Article  CAS  Google Scholar 

  7. Guo L, Colby RH, Lusignan CP, Howe AM (2003) Physical gelation of gelatin studied with rheo-optics. Macromolecules 36:10009–10020. https://doi.org/10.1021/ma034266c

    Article  CAS  Google Scholar 

  8. Avallone PR, Raccone E, Costanzo S et al (2021) Gelation kinetics of aqueous gelatin solutions in isothermal conditions via rheological tools. Food Hydrocoll 111:106248. https://doi.org/10.1016/j.foodhyd.2020.106248

    Article  CAS  Google Scholar 

  9. Okawa Y, Komuro W, Kobayashi H, Ohno T (1997) Rheological study on gelatin gelation. Imaging Sci J 45:197–200. https://doi.org/10.1080/13682199.1997.11736184

    Article  CAS  Google Scholar 

  10. Haug IJ, Draget KI, Smidsrød O (2004) Physical and rheological properties of fish gelatin compared to mammalian gelatin. Food Hydrocoll 18:203–213. https://doi.org/10.1016/S0268-005X(03)00065-1

    Article  CAS  Google Scholar 

  11. Goudie KJ, McCreath SJ, Parkinson JA et al (2023) Investigation of the influence of pH on the properties and morphology of gelatin hydrogels. J Polym Sci 61:2316–2332. https://doi.org/10.1002/pol.20230141

    Article  CAS  Google Scholar 

  12. Abrigo M, McArthur SL, Kingshott P (2014) Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol Biosci 14:772–792. https://doi.org/10.1002/mabi.201300561

    Article  CAS  PubMed  Google Scholar 

  13. He CL, Huang ZM, Han XJ (2009) Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications. J Biomed Mater Res A 89:80–95. https://doi.org/10.1002/jbm.a.32004

    Article  CAS  PubMed  Google Scholar 

  14. Farsi M, Asefnejad A, Baharifar H (2022) A hyaluronic acid/PVA electrospun coating on 3D printed PLA scaffold for orthopedic application. Prog Biomater 11:67–77. https://doi.org/10.1007/s40204-022-00180-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li M, Yu H, Xie Y et al (2021) Fabrication of eugenol loaded gelatin nanofibers by electrospinning technique as active packaging material. LWT 139:110800. https://doi.org/10.1016/j.lwt.2020.110800

    Article  CAS  Google Scholar 

  16. Zhao L, Duan G, Zhang G et al (2020) Electrospun functional materials toward food packaging applications: a review. Nanomaterials 10:150. https://doi.org/10.3390/nano10010150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Erencia M, Cano F, Tornero JA et al (2014) Resolving the electrospinnability zones and diameter prediction for the electrospinning of the gelatin/water/acetic acid system. Langmuir 30:7198–7205. https://doi.org/10.1021/la501183f

    Article  CAS  PubMed  Google Scholar 

  18. Gupta P, Elkins C, Long TE, Wilkes GL (2005) Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer (Guildf) 46:4799–4810. https://doi.org/10.1016/j.polymer.2005.04.021

    Article  CAS  Google Scholar 

  19. Qiao C, Chen G, Li Y, Li T (2013) Viscosity properties of gelatin in solutions of monovalent and divalent salts. Korea Aust Rheol J 25:227–231. https://doi.org/10.1007/s13367-013-0023-8

    Article  Google Scholar 

  20. Erencia M, Cano F, Tornero JA et al (2016) Preparation of electrospun nanofibers from solutions of different gelatin types using a benign solvent mixture composed of water/PBS/ethanol. Polym Adv Technol 27:382–392. https://doi.org/10.1002/pat.3678

    Article  CAS  Google Scholar 

  21. Erencia M, Cano F, Tornero JA et al (2015) Electrospinning of gelatin fibers using solutions with low acetic acid concentration: effect of solvent composition on both diameter of electrospun fibers and cytotoxicity. J Appl Polym Sci 132:42115. https://doi.org/10.1002/app.42115

    Article  CAS  Google Scholar 

  22. Songchotikunpan P, Tattiyakul J, Supaphol P (2008) Extraction and electrospinning of gelatin from fish skin. Int J Biol Macromol 42:247–255. https://doi.org/10.1016/j.ijbiomac.2007.11.005

    Article  CAS  PubMed  Google Scholar 

  23. Kooshina K, Sima H, Talebian A (2017) Fabrication and characterization of gelatin nanofibers dissolved in concentrated acetic acid. Int J Chem Mol Eng 11:32577. https://doi.org/10.5281/zenodo.1131409

    Article  Google Scholar 

  24. Okutan N, Terzi P, Altay F (2014) Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll 39:19–26. https://doi.org/10.1016/j.foodhyd.2013.12.022

    Article  CAS  Google Scholar 

  25. Haider S, Al-Masry WA, Bukhari N, Javid M (2010) Preparation of the chitosan containing nanofibers by electrospinning chitosan-gelatin complexes. Polym Eng Sci 50:1887–1893. https://doi.org/10.1002/pen.21721

    Article  CAS  Google Scholar 

  26. Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater 94:264–272. https://doi.org/10.1002/jbm.b.31651

    Article  CAS  PubMed  Google Scholar 

  27. Kim HW, Song JH, Kim HE (2005) Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater 15:1988–1994. https://doi.org/10.1002/adfm.200500116

    Article  CAS  Google Scholar 

  28. Huang ZM, Zhang YZ, Ramakrishna S, Lim CT (2004) Electrospinning and mechanical characterization of gelatin nanofibers. Polymer (Guildf) 45:5361–5368. https://doi.org/10.1016/j.polymer.2004.04.005

    Article  CAS  Google Scholar 

  29. Zha Z, Teng W, Markle V et al (2012) Fabrication of gelatin nanofibrous scaffolds using ethanol/phosphate buffer saline as a benign solvent. Biopolymers 97:1026–1036. https://doi.org/10.1002/bip.22120

    Article  CAS  PubMed  Google Scholar 

  30. Zhang S, Huang Y, Yang X et al (2009) Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. J Biomed Mater Res A 90:671–679. https://doi.org/10.1002/jbm.a.32136

    Article  CAS  PubMed  Google Scholar 

  31. Ki CS, Baek DH, Gang KD et al (2005) Characterization of gelatin nanofiber prepared from gelatin-formic acid solution. Polymer (Guildf) 46:5094–5102. https://doi.org/10.1016/j.polymer.2005.04.040

    Article  CAS  Google Scholar 

  32. Choktaweesap N, Arayanarakul K, Aht-Ong D et al (2007) Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polym J 39:622–631. https://doi.org/10.1295/polymj.PJ2006190

    Article  CAS  Google Scholar 

  33. Mahmood K, Kamilah H, Sudesh K et al (2019) Study of electrospun fish gelatin nanofilms from benign organic acids as solvents. Food Packag Shelf Life 19:66–75. https://doi.org/10.1016/j.fpsl.2018.11.018

    Article  Google Scholar 

  34. Butcher AL, Koh CT, Oyen ML (2017) Systematic mechanical evaluation of electrospun gelatin meshes. J Mech Behav Biomed Mater 69:412–419. https://doi.org/10.1016/j.jmbbm.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  35. Steyaert I, Rahier H, Van Vlierberghe S et al (2016) Gelatin nanofibers: analysis of triple helix dissociation temperature and cold-water-solubility. Food Hydrocoll 57:200–2008. https://doi.org/10.1016/j.foodhyd.2016.01.016

    Article  CAS  Google Scholar 

  36. Christopherson GT, Song H, Mao HQ (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30:556–564. https://doi.org/10.1016/j.biomaterials.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  37. Pelipenko J, Kocbek P, Kristl J (2015) Nanofiber diameter as a critical parameter affecting skin cell response. Eur J Pharm Sci 66:29–35. https://doi.org/10.1016/j.ejps.2014.09.022

    Article  CAS  PubMed  Google Scholar 

  38. Voron’ko NG, Derkach SR, Kuchina YA, et al (2019) Influence of added gelatin on the rheological properties of a fucus vesiculosus extract. Food Biosci 29:1–8. https://doi.org/10.1016/j.fbio.2019.03.002

    Article  Google Scholar 

  39. Normand V, Lootens DL, Amici E et al (2000) New insight into agarose gel mechanical properties. Biomacromol 1:730–738. https://doi.org/10.1021/bm005583j

    Article  CAS  Google Scholar 

  40. Crapse J, Pappireddi N, Gupta M et al (2021) Evaluating the Arrhenius equation for developmental processes. Mol Syst Biol 17:e9895. https://doi.org/10.15252/msb.20209895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Litvinov M, Uspenskaya MV, Kovalev K, Podshivalov A (2021) Study of the kinetics of the gelation process of gelatin in various dissolving systems. In: 21st SGEM International Multidisciplinary Scientific GeoConference Proceedings 2021 Nano Bio Green and Space Technologies for Sustainable Future. STEF92 Technology, pp 249–256. https://doi.org/10.5593/sgem2021/6.1/s25.32

    Chapter  Google Scholar 

  42. Litvinov M, Podshivalov A, Kovalev K (2021) Morphological study of the particle-to-fiber transition threshold during electrohydrodynamic processing of chitosan solution. J Macromol Sci A Pure Appl Chem 58:804–810. https://doi.org/10.1080/10601325.2021.1950012

    Article  CAS  Google Scholar 

  43. Bhattarai RS, Bachu RD, Boddu SHS, Bhaduri S (2019) Biomedical applications of electrospun nanofibers: drug and nanoparticle delivery. Pharmaceutics 11:5. https://doi.org/10.3390/pharmaceutics11010005

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant from the Council for Grants of the President of the Russian Federation No. MK-5304.2022.1.3 (Agreement No. 075-15-2022-690).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Podshivalov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvinov, M., Podshivalov, A. Effect of the composition and electrospinning time of gelatin solutions in acetic acid on their rheological properties and nanofiber morphology. J Polym Res 31, 107 (2024). https://doi.org/10.1007/s10965-024-03951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03951-3

Keywords

Navigation