Skip to main content
Log in

Development of macroporous silicone rubber composites by internal emulsion templating for acoustic applications

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work reports synthesis of macroporous silicone rubber (MPSR) composites using room temperature vulcanizable liquid silicone rubber (LSR), comparatively non-hazardous pore-generator (oil-in-water emulsion) and hexagonal boron nitride (h-BN). Besides, effects of pore generators and filler incorporation (~0.1–0.3 wt. % hexagonal boron nitride, h-BN) on acoustic properties (sound absorption coefficient and transmission loss) have been investigated. Microstructural study revealed that pore size distribution, porosity content and fraction of interconnected pores in MPSR samples were significantly affected by addition of pore generators and h-BN filler, which finally influenced their acoustic properties. MPSR samples synthesized with optimal content of pore generators displayed an average sound absorption coefficient (SAC) of ∼0.41 and transmission loss (TL) of 5 − 42 dB in the frequency range of 63–6300 Hz. Interestingly, incorporation of only 0.2 wt.% h-BN in this optimized MPSR sample further improved the sound-absorbing capability (average SAC ~0.44) at a frequency higher than 1000 Hz and transmission loss over the entire frequency range (> 100 Hz). This was ascribed to the decrease in pore size, increase in interconnected pores and possibility of enhanced mechanical energy dissipation at polymer matrix-h-BN interface by interfacial sliding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting this study's findings are available from the corresponding author upon reasonable request.

Abbreviations

h-BN:

Hexagonal boron nitride

MPSR:

Macroporous silicone rubber

SAC:

Sound absorption coefficient

TL:

Transmission loss

SR:

Silicone rubber

LSR:

Liquid silicone rubber

DI-W:

Deionized water

O-DI-W:

Oil-in-deionized water

Vo%:

Volume percentage

wt.%:

Weight percentages

References

  1. Robert DC, Sperling LH (1990) Sound and vibration damping with polymers, American Chemical Society-Division of Polymeric Materials: Science and Engineering, Washington, DC, USA

  2. Frank G, Christian E, Dietmar K (2011) A novel production method for porous sound-absorbing ceramic material for high-temperature applications. Int J Appl Ceram Technol 8:646–652. https://doi.org/10.1111/j.1744-7402.2009.02479.x

    Article  CAS  Google Scholar 

  3. Thompson BR, Taylor BL, Qin Q et al (2017) Sound transmission loss of hierarchically porous composites produced by hydrogel templating and viscous trapping techniques. Mater Chem Front 1:2627–2637. https://doi.org/10.1039/c7qm00371d

    Article  CAS  Google Scholar 

  4. Lee CL, Spells S (1982) Sound absorption property of platinum catalyzed silicone RTV Foam. J Cell Plast 18:174–177. https://doi.org/10.1177/0021955X8201800303

    Article  CAS  Google Scholar 

  5. Abbad A, Jaboviste K, Ouisse M, Dauchez N (2018) Acoustic performances of silicone foams for sound absorption. J Cell Plast 54:651–670. https://doi.org/10.1177/0021955X17732305

    Article  CAS  Google Scholar 

  6. Kumar A, Mollah AA, Keshri AK et al (2016) Development of macroporous silicone rubber for acoustic applications. Ind Eng Chem Res 55:8751–8760. https://doi.org/10.1021/acs.iecr.6b02051

    Article  CAS  Google Scholar 

  7. Hasani Baferani A, Katbab AA, Ohadi AR (2022) Study the effects of functionality of carbon nanotubes upon acoustic wave absorption coefficient, microstructure, and viscoelastic behavior of polyurethane/CNT nanocomposite foam. J Polym Res 29:227. https://doi.org/10.1007/s10965-022-03086-3

    Article  CAS  Google Scholar 

  8. Adachi H, Hasegawa T, Asano T (1997) Cell distributions in and sound absorption characteristics of flexible polyurethane foams. J Appl Polym Sci 65:1395–1402. https://doi.org/10.1002/(sici)1097-4628(19970815)65:7%3c1395::aid-app18%3e3.3.co;2-t

    Article  CAS  Google Scholar 

  9. Zhou H, Li B, Huang G (2006) Sound absorption characteristics of polymer microparticles. J Appl Polym Sci 101:2675–2679. https://doi.org/10.1002/app.23911

    Article  CAS  Google Scholar 

  10. Zhang C, Li J, Hu Z et al (2012) Correlation between the acoustic and porous cell morphology of polyurethane foam: Effect of interconnected porosity. Mater Des 41:319–325. https://doi.org/10.1016/j.matdes.2012.04.031

    Article  CAS  Google Scholar 

  11. Delany ME, Bazley EN (1970) Acoustical properties of fibrous absorbent materials. Appl Acoust 3:105–116. https://doi.org/10.1016/0003-682X(70)90031-9

    Article  Google Scholar 

  12. Liu XY, Zhan MS, Wang K (2012) Influence of foam structure and service environment on sound absorption characteristics of polyimide foams. High Perform Polym 24:646–653. https://doi.org/10.1177/0954008312448073

    Article  CAS  Google Scholar 

  13. Sung G, Kim JH (2017) Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers. Compos Sci Technol 146:147–154. https://doi.org/10.1016/j.compscitech.2017.04.029

    Article  CAS  Google Scholar 

  14. Lapčík L, Vašina M, Lapčíková B et al (2015) Investigation of advanced mica powder nanocomposite filler materials: Surface energy analysis, powder rheology and sound absorption performance. Compos Part B Eng 77:304–310. https://doi.org/10.1016/j.compositesb.2015.03.056

    Article  CAS  Google Scholar 

  15. Kabir II, Fu Y, Souza N. De, et al (2020) PDMS/MWCNT nanocomposite films for underwater sound absorption applications. J Mater Sci 55:5048–5063. https://doi.org/10.1007/s10853-020-04349-4

  16. Zhang K, Qiu J, Sakai E et al (2023) Thermally conductive silicone rubber used as insulation coating through incremental curing and the effects of thermal filler on its mechanical and thermal properties. J Polym Res 30:1–10. https://doi.org/10.1007/s10965-023-03842-z

    Article  CAS  Google Scholar 

  17. Gonzalez Ortiz D, Pochat-Bohatier C, Cambedouzou J et al (2018) Exfoliation of hexagonal boron nitride (h-BN) in liquide phase by ion intercalation. Nanomaterials 8:716. https://doi.org/10.3390/nano8090716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhi C, Tang C, Terao T et al (2010) Boron Nitride nanotubes and Nanosheets. ACS Nano 4:2979–2993. https://doi.org/10.1021/nn1006495

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Zou J, Campbell SJ, Caer G (2004) Boron Nitride nanotubes: Pronounced resistance to oxidation. Appl Phys Lett 84:2430–2432. https://doi.org/10.1063/1.1667278

    Article  CAS  Google Scholar 

  20. Kubota Y, Watanabe K, Tsuda O, (2007) Deep Ultraviolet Light – Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure. Science 317:932–934. https://doi.org/10.1126/science.1144216

  21. Tian Z, Sun J, Wang S et al (2018) A thermal interface material based on foam-templated three-dimensional hierarchical porous boron nitride. J Mater Chem A 6:17540–17547. https://doi.org/10.1039/c8ta05638b

    Article  CAS  Google Scholar 

  22. Zhang RC, Sun D, Lu A et al (2016) Microplasma processed ultrathin Boron Nitride nanosheets for Polymer nanocomposites with enhanced thermal transport performance. ACS Appl Mater Interfaces 8:13567–13572. https://doi.org/10.1021/acsami.6b01531

    Article  CAS  PubMed  Google Scholar 

  23. Huang Y, Zhou D, Xie Y et al (2014) Tunable sound absorption of silicone rubber materials via mesoporous silica. RSC Adv 4:15171–15179. https://doi.org/10.1039/c4ra00970c

    Article  CAS  Google Scholar 

  24. Zimny K, Merlin A, Ba A et al (2015) Soft porous silicone rubbers as key elements for the realization of Acoustic metamaterials. Langmuir 31:3215–3221. https://doi.org/10.1021/la504720f

    Article  CAS  PubMed  Google Scholar 

  25. Barby D, Haq DZ (1982) Low density porous cross-linked polymeric materials and their preparation and use as carriers for included liquids. Eur Patent EP060138

  26. Cameron NR (2005) High internal phase emulsion templating as a route to well-defined porous polymers. Polymer 46:1439–1449. https://doi.org/10.1016/j.polymer.2004.11.097

    Article  CAS  Google Scholar 

  27. Kimmins SD, Cameron NR (2011) Functional porous polymers by emulsion templating: recent advances. Adv Funct Mater 21:211–225. https://doi.org/10.1002/adfm.201001330

    Article  CAS  Google Scholar 

  28. Williams JM (1991) High Internal Phase Water-in-oil emulsions: influence of surfactants and cosurfactants on Emulsion Stability and Foam Quality. Langmuir 7:1370–1377. https://doi.org/10.1021/la00055a014

    Article  CAS  Google Scholar 

  29. Benaddi AO, Cohen O, Matyjaszewski K, Silverstein MS (2021) RAFT polymerization within high internal phase emulsions: porous structures, mechanical behaviors, and uptakes. Polym (Guildf) 213:123327. https://doi.org/10.1016/j.polymer.2020.123327

    Article  CAS  Google Scholar 

  30. Iino T, Nakamura K (2011) Density dependence of acoustic characteristics of silica nanofoam. Acoust Sci Technol 32:132–136. https://doi.org/10.1250/ast.32.132

    Article  Google Scholar 

  31. Kovalenko A, Fauquignon M, Brunet T, Mondain-Monval O (2017) Tuning the sound speed in macroporous polymers with a hard or soft matrix. Soft Matter 13:4526–4532. https://doi.org/10.1039/c7sm00744b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge BHEL management for providing the infrastructure for carrying out the work, Prof. Venkatesam’s group of the Mechanical Engineering Department of IIT Hyderabad for the TL measurements, Manish Agarwal and Sai Babu of MDF, BHEL R&D, for SAC measurements and Sarang Mahajan of CNT, BHEL R&D, for schematic drawings.

Funding

The authors received no financial support for this article's research, authorship, and publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Ethics declarations

Conflict of interest

The authors say that they have no known competing financial interests or personal affiliations that could have influenced the study's findings. As a result, the authors state that no conflict of interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 1422 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Seelaboyina, R., Jana, S. et al. Development of macroporous silicone rubber composites by internal emulsion templating for acoustic applications. J Polym Res 31, 78 (2024). https://doi.org/10.1007/s10965-024-03932-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03932-6

Keywords

Navigation