Skip to main content
Log in

Preparation and evaluation of an ultra-high temperature resistant zwitterionic polymer viscosity reducer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, a new zwitterionic polymer viscosity reducer (HP-THIN) was designed to address the issue of viscosity increases in high-temperature and high-density water-based drilling fluids. HP-THIN is specifically formulated for ultra-high temperatures and optimized using the viscosity reduction index before and after thermal aging. The molecular structure, thermal stability, and viscosity-average molecular weight of HP-THIN were characterized using FTIR, TGA, and rheometric analysis using a Ubbelohde viscometer. The viscosity-reducing performance of HP-THIN was evaluated in various types of drilling fluid-based slurries at 220 °C, including fresh-water slurry, brine slurry, calcium-containing slurry, and high-density composite brine slurry. Furthermore, HP-THIN was compared to commercial viscosity reducers such as Polythin and xy-27. At optimal dosage of 0.3 wt.% at 220 °C, HP-THIN demonstrated excellent viscosity reduction rates of 86%, 72%, 73%, and 51% in fresh-water slurry, brine slurry, calcium-containing slurry, and high-density composite brine slurry, respectively. HP-THIN exhibited superior viscosity reduction index in all drilling fluid slurries, compared to Polythin exhibiting reduction index of 86%, 64%, 30% and -17.8% while xy-27 achieved reduction rates of 83.3%, 56%, 55% and 37.8%. The excellent viscosity reduction performance of HP-THIN makes it a promising candidate for practical applications in the oil and gas industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Su Y, Lu B, Liu Y, Zhou Y, Liu X, Liu W, Zang Y (2020) Status and research suggestions on the drilling and completion technologies for onshore deep and ultra deep wells in China. Oil Drill Prod Technol 42(5):527–542. https://doi.org/10.13639/j.odpt.2020.05.001

    Article  CAS  Google Scholar 

  2. Xie B, Tchameni AP, Luo M, Wen J (2021) A novel thermo-associating polymer as rheological control additive for bentonite drilling fluid in deep offshore drilling. Mater Lett 284:128914. https://doi.org/10.1016/j.matlet.2020.128914

    Article  CAS  Google Scholar 

  3. He Y, Zheng Y, Wu B (2023) Analyses and research on the influencing factors of Deep and Ultra-deep cementing whole process. Technol Superv Petroleum Ind 39(03):1–3. https://doi.org/10.20029/j.issn.1004-1346.2023.03.001

    Article  Google Scholar 

  4. Wang H, Huang H, Bi W, Ji G, Zhou B, Zhuo L (2022) Deep and ultra-deep oil and gas well drilling technologies: Progress and prospect. Nat Gas Ind B 9(2):141–157. https://doi.org/10.1016/j.ngib.2021.08.019

    Article  Google Scholar 

  5. Shen H, Sun J, Lyu K, Huang X, Liu J, Wang J, Bai Y, Jin J (2022) Research Progress and Application prospects of Intelligent Organic Treatment Agent for Water-based Drilling Fluid. Oilfield Chem 39(01):155–162. https://doi.org/10.19346/j.cnki.1000-4092.2022.01.027

    Article  CAS  Google Scholar 

  6. Yang X, Shi X, Meng Y, Xie X (2020) Wellbore stability analysis of layered shale based on the modified Mogi–coulomb criterion. Petroleum 6(3):246–252. https://doi.org/10.1016/j.petlm.2019.11.002

    Article  Google Scholar 

  7. Aftab A, Ismail AR, Lbupoto ZH, Akeiber H, Malghani MGK (2017) Nanoparticles based drilling muds a solution to drill elevated temperature wells: a review. Renew Sustain Energy Rev 76:1301–1313. https://doi.org/10.1016/j.rser.2017.03.050

    Article  CAS  Google Scholar 

  8. Jiang G, Ni X, Li W, Quan X, Luo X (2020) Super-amphiphobic, strong self-cleaning and high-efficiency water-based drilling fluids. Pet Explor Dev 47(2):421–429. https://doi.org/10.1016/S1876-3804(20)60059-3

    Article  Google Scholar 

  9. Pang S, Zhu H, Ma J, Zhao L, Yang C, An Y (2022) Sulfonated sodium tannin and AM/AMPS copolymer complex as an anti-temperature viscosity reducer for water-based drilling fluid. Energy sources, part. Recovery Utilization Environ Eff 44(4):9827–9843. https://doi.org/10.1080/15567036.2022.2143961

    Article  CAS  Google Scholar 

  10. Li Q, Zhao Q, Dai H, Huang R, Liang B, Zhang X (2014) Synthesis and characterization of Calcium Lignosulfonate grafted with p-Styrenesulfonate and maleic anhydride. Polym Mater Sci Eng 30(2):72–76. https://doi.org/10.16865/j.cnki.1000-7555.2014.02.015

    Article  Google Scholar 

  11. Huang W, Zhao C, Qiu Z, Leong YK, Zhong H, Cao J (2015) Synthesis, characterization and evaluation of a quadripolymer with low molecular weight as a water-based drilling fluid viscosity reducer at high temperature (245oC). Polym Int 64(10):1352–1360. https://doi.org/10.1002/pi.4923

    Article  CAS  Google Scholar 

  12. Xie J, Li B, Zhang B (2013) Synthesis and properties evaluation of ultra-high density drilling fluid dispersant. Chem Eng Oil Gas 42(05):496–500. https://doi.org/10.3969/j.issn.1007-3426.2013.05.012

    Article  CAS  Google Scholar 

  13. Kuang S, Pu X, Liu Y (2010) Principles of controlling wall building properties of ultra-high-density water-based drilling fluid. Drill Fluid Completion Fluid 27(5):8–11. https://doi.org/10.3969/j.issn.1001-5620.2010.05.003

    Article  Google Scholar 

  14. Zhang G, Wang S, Shi P (2000) Research and applications of viscosity reducers for drilling fluids in China. Oilfield Chem 1:78–82. https://doi.org/10.19346/j.cnki.1000-4092.2000.01.022

    Article  Google Scholar 

  15. Zhang C, Liu S, Liu S, Yuan Y, Qian F, Li W, Duan M (2023) Preparation and performance evaluation of Zwitterionic Polymer Viscosity Reducer. Oilfield Chem 40(01):7–11. https://doi.org/10.19346/j.cnki.1000-4092.2023.01.002

    Article  CAS  Google Scholar 

  16. Wang G, Wu Y, Liu D, Duan C (2015) Synthesis and performance evaluation of thinner for drilling fluid used at high temperature and salt. Appl Chem Ind 44(10):1897–1900. https://doi.org/10.16581/j.cnki.issn1671-3206.2015.10.029

    Article  CAS  Google Scholar 

  17. Hermoso J, Martinez BF, Gallegos C (2014) Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure. Appl Clay Sci 87:14–21. https://doi.org/10.1016/j.clay.2013.10.011

    Article  CAS  Google Scholar 

  18. Ujma KHW, Plank JP (1989) A new calcium-tolerant polymer helps to improve drilling-mud performance and to reduce costs. SPE Drill Eng J 4:41–46. https://doi.org/10.2118/16685-pa

    Article  Google Scholar 

  19. Wang L, Sun G, Li D, Xia H, Li W, Xu T, Zhang H (2021) Performance of New Salt-resistant polymer solution and evaluation of Oil Displacement Effect. Mater Rev 35(1B):02171–02177. https://doi.org/10.11896/cldb.19070048

    Article  Google Scholar 

  20. Zhu Y, Guo Y, Xu H, Pang X, Li H (2021) Preparation and performance evaluation of Hydrophobically associating polymer with temperature resistance and salt tolerance. Oilfield Chem 38(02):317–323. https://doi.org/10.19346/j.cnki.1000-4092.2021.02.022

    Article  CAS  Google Scholar 

  21. Jia M, Huang W, Qiu Z, Jiang L, Cao J, Zhong H, Mao H (2015) Synthesis and evaluation of Polymer Viscosity Reducer with Ultra-high temperature (240oC) and salt tolerance. Chem Reagents 37(12):1067–1072. https://doi.org/10.13822/j.cnki.hxsj.2015.12.003

    Article  CAS  Google Scholar 

  22. Mann PJ, Wen S, Xiaonan Y, Stevenson WTK (1990) A modified ubbelohde viscometer with improved dilution characteristics. Eur Polymer J 26(4):489–491. https://doi.org/10.1016/0014-3057(90)90059-D

    Article  CAS  Google Scholar 

  23. Uspenskaya MV, Deĭneka GB, Sirotinkin NV (2006) A multivariate analysis of the IR spectra of tetrazole-containing copolymers. Opt Spectrosc 100:204–208. https://doi.org/10.1134/s0030400x06020093

    Article  CAS  Google Scholar 

  24. Baloch MK, Khurram MJZ, Durrani GF (2011) Application of different methods for the thermogravimetric analysis of polyethylene samples. J Appl Polym Sci 120(6):3511–3518. https://doi.org/10.1002/app.33538

    Article  CAS  Google Scholar 

  25. Li Q, Zhao Q, Dai H, Liang B, Zhang X (2014) Synthesis and characterization of Calcium Lignosulfonate grafted with p-Styrenesulfonate and maleic anhydride. Polym Mater Sci Eng 30(02):72–76. https://doi.org/10.16865/j.cnki.1000-7555.2014.02.015

    Article  Google Scholar 

  26. Xie Y, Lu L, Zhang S, Pan B, Wang X, Chen Q, Zhang W, Zhang Q (2011) Fabrication of anion exchanger resin/nano-CdS composite photocatalyst for visible light RhB degradation. Nanotechnology 22(30):305707. https://doi.org/10.1088/0957-4484/22/30/305707

    Article  CAS  PubMed  Google Scholar 

  27. Tan X, Liu F, Hu L, Reed AH, Furukawa Yoko, Zhang G (2017) Evaluation of the particle sizes of four clay minerals. Appl Clay Sci 135:313–324. https://doi.org/10.1016/j.clay.2016.10.012

    Article  CAS  Google Scholar 

  28. Ma J, Pan Y, Yu P, An Y (2019) Research Progress on Shale inhibitors at Home and abroad in recent ten years. Oilfield Chem 36(01):181–187. https://doi.org/10.19346/j.cnki.1000-4092.2019.01.034

    Article  CAS  Google Scholar 

  29. Zhang T, Ge J, Wu H, Guo H, Jiao B, Qian Z (2022) Effect of AMPS (2-acrylamido-2-methylpropane sulfonic acid) content on the properties of polymer gels. Pet Sci 19(2):697–706. https://doi.org/10.1016/j.petsci.2022.01.006

    Article  CAS  Google Scholar 

  30. Ma J, Yu P, Xia B, An Y (2019) Effect of salt and temperature on molecular aggregation behavior of acrylamide polymer. E-Polymers 19(1):597–606. https://doi.org/10.1515/epoly-2019-0063

    Article  CAS  Google Scholar 

  31. Dong Z (2021) Development and evaluation of temperature and salt resistant polymer viscosifier. Oilfield Chem 38(01):29–33. https://doi.org/10.19346/j.cnki.1000-4092.2021.01.006

    Article  CAS  Google Scholar 

  32. Dong W (2014) Synthesis and performance evaluation of a new polymer thickener resisting to high temperature and salt. J Xi’an Shiyou Univ (Natural Sci Edition) 29(05):75–79. https://doi.org/10.3969/j.issn.1673-064X.2014.05.015

    Article  CAS  Google Scholar 

  33. Dou L, Zhu Y, Ji Y (2021) Synthesis and Solution properties of AM/PTDAB/AMPS/NaAA Quaternary Copolymer. Oilfield Chem 38(01):119–124. https://doi.org/10.19346/j.cnki.1000-4092.2021.01.022

    Article  CAS  Google Scholar 

  34. Li X, Xie B, Zhao L (2018) Synthesis and evaluation of new heat-resistant and salt-tolerant polymer viscosifier. Petrochemical Technol 47(6):595–599. https://doi.org/10.3969/j.issn.1000-8144.2018.06.012

    Article  CAS  Google Scholar 

  35. Huo J, Yu B, Xu X, Che Y, Zhang J, Zhang X, Zhang R (2023) Design, synthesis and functional enhancement mechanism of heat-resistant and salt-resistant hydrogel. J Xihua University(Natural Sci Edition) 42(3):59–70. https://doi.org/10.12198/j.issn.1673-159X.4789

    Article  Google Scholar 

  36. Zhang Y, Qu Y, Zhang Z, Cheng R, Yang Z (2022) Research Progress and Development Direction of Technologies for Water-based Drilling Fluid in Ultra-high temperature. Oilfield Chem 39(03):540–547. https://doi.org/10.19346/j.cnki.1000-4092.2022.03.027

    Article  CAS  Google Scholar 

  37. Ji T, Song L, Wei K, Wang X (2019) Study on influence factors of mud cake permeability. Chem World 60(11):804–811. https://doi.org/10.19500/j.cnki.0367-6358.20180520

    Article  CAS  Google Scholar 

  38. Chen G, Lei J, Du Y, Du Y, Chen X (2018) A polycarboxylate as a superplasticizer for montmorillonite clay in cement: Adsorption and tolerance studies. Arab J Chem 11(6):745–755. https://doi.org/10.1016/j.arabjc.2017.12.027

    Article  CAS  Google Scholar 

  39. Yang Y, Rong K, Xu S, Li J, Yu Y, Li J (2018) Synthesis and performance of a polyampholyte inhibitor. Chem Ind Eng Progress 37(06):2370–2377. https://doi.org/10.16085/j.issn.1000-6613.2017-2373

    Article  Google Scholar 

  40. Fang J, Niu X, He Z, Bao J, Wang G (2017) Research and evaluation of zwitterionic film forming sealing agent used in drilling fluids. Appl Chem Ind 46(02):234–239. https://doi.org/10.16581/j.cnki.issn1671-3206.2017.02.015

    Article  Google Scholar 

  41. Chang W, Leong YK (2014) Ageing and collapse of bentonite gels-effects of Li, na, K and Cs ions. Rheol Acta 53:109–122. https://doi.org/10.1007/s00397-013-0744-0

    Article  CAS  Google Scholar 

  42. Du L, Yang F, Mu Y, Yu R, Zuo J, Gao J, Yu X, Teng L, Tang X (2014) Evaluation of the Acute toxicity of Pharmaceutical Wastewater to luminescent Bacteria. Environ Sci 35(01):286–291. https://doi.org/10.13227/j.hjkx.2014.01.041

    Article  Google Scholar 

  43. Kang W, Zhang L, Meng L, Peng S (2012) The study of static adsorption of the amphiphilic polymer on rocks and minerals. Appl Chem Ind 41(11):1865–1867. https://doi.org/10.16581/j.cnki.issn1671-3206.2012.11.040

    Article  CAS  Google Scholar 

  44. Zhang Y, Xie K, Kang X, Li Q, Jiang X, Deng X (2016) Research on Static Adsorption and Desorption of Hydrophobic associating polymer AP-P4 under the formation Condition of SZ36-1 Reservoir. Oilfield Chem 33(3):468–476. https://doi.org/10.19346/j.cnki.1000-4092.2016.03.018

    Article  CAS  Google Scholar 

  45. Pang S, An Y, Ma J, Zhao L, Yang C (2022) Development and performance evaluation of high temperature resistant viscosity reducer SMT/AMPS. Appl Chem Ind 51(08):2194–2199. https://doi.org/10.16581/j.cnki.issn1671-3206.20220831.008

    Article  Google Scholar 

  46. Zhang G, Wang S, Shi P (2000) Researches and applications of viscosity reducers for drilling fluids in China. Oilfield Chem 01:78–81. https://doi.org/10.19346/j.cnki.1000-4092.2000.01.022

    Article  Google Scholar 

  47. Nieto-Alvarez D, Zamudio-Rivera L, Luna-Rojero E, Rodríguez-Otamendi D, Marín-León A, Hernández-Altamirano R, Mena-Cervantes V, Chávez-Miyauchi T (2014) Adsorption of zwitterionic surfactant on limestone measured with high-performance liquid chromatography: micelle-vesicle influence. Langmuir 30(41):12243–12249. https://doi.org/10.1021/la501945t

    Article  CAS  PubMed  Google Scholar 

  48. Loretta Y, Raymond S (2011) The role of clay minerals and the effect of H+ ions on removal of heavy metal (Pb2+) from contaminated soils. Can Geotech J 37(2):296–307. https://doi.org/10.1139/t99-106

    Article  Google Scholar 

  49. Li J, Wang Z, Hu A (2011) Application progress of Water-Soluble Amphoteric polymers in Oil Field Development. Oilfield Chem 28(02):229–235. https://doi.org/10.19346/j.cnki.1000-4092.2011.02.027

    Article  CAS  Google Scholar 

  50. Pang S, An Y, Ma J (2022) Research progress of domestic drilling fluid viscosity reducer in recent ten years. Drill Eng 49(1):96–103. https://doi.org/10.12143/j.ztgc.2022.01.013

    Article  Google Scholar 

  51. Lu Li, Samanvaya S, Meng S, Jeffrey M, Matthew V (2020) Effects of Non-electrostatic Intermolecular interactions on the phase behavior of pH-Sensitive polyelectrolyte complexes. Macromolecules 53(18):7835–7844. https://doi.org/10.1021/acs.macromol.0c00999

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the financial support from Sinopec Key Laboratory of Enhanced Oil Recovery for Fractured Vuggy Reservoirs for this work.

Funding

Supported by the Foundation of Development of thermo-responsive-self-adaptiveness Janus nanoparticle and its shale plugging mechanism (No. 52150410427).

Author information

Authors and Affiliations

Authors

Contributions

Hu Deng: Conceptualization, Data curation, Formal analysis, Funding acquisition, Methodology, Writing – original draft. Huaizhi Tao: Investigation, Visualization, Writing – review & editing. Jiawei Ai: Investigation, Visualization, Writing – review & editing. Jindong Chen: Project administration. Binqiang Xie: Resources, Supervision, Lesly Dasilva Wandji Djouonkep: Validation, revision.

Corresponding author

Correspondence to Jindong Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10965_2024_3921_MOESM1_ESM.docx

The file contains information on the orthogonal experimental procedure, the effect of shear rate on viscosity, environmental and biological toxicity evaluation, the effect of HP-THIN and filtration loss reduction agent, and the cost-affordability of HP-THIN as supporting information. (DOCX 98 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Tao, H., Ai, J. et al. Preparation and evaluation of an ultra-high temperature resistant zwitterionic polymer viscosity reducer. J Polym Res 31, 71 (2024). https://doi.org/10.1007/s10965-024-03921-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03921-9

Keywords

Navigation