Skip to main content
Log in

The synthesis of 4,4'-methylenebis(cyclohexylamine)-based porous organic polymers via nucleophilic substitution reactions for uptaking iodine and fluorescence sensing to dinitrophenol

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In order to achieve effective removal of radioactive iodine, trace detection of dinitrophenol (DNP), here, we have synthesized two porous organic polymers (POPs, TMCHA and HMCHA) by nucleophilic substitution reactions with specific surface areas of 1730 and 1796 m2 g−1, respectively. The adsorption capacities of POPs in iodine vapor and cyclohexane and the fluorescence sensing performances for DNP are studied. The results show that the adsorption capacities of TMCHA and HMCHA in iodine vapor are as high as 3.77 and 2.74 g g−1, and the removal efficiencies of iodine in iodine-cyclohexane solution are 97% and 73%, respectively. The iodine adsorption mechanism of the MCHA-based POPs is the electron transfer mechanism. The Stern–Volmer quenching constants (Ksv) of TMCHA and HMCHA for fluorescence quenching of DNP are 4.04 × 103 and 4.42 × 103 L mol−1, respectively. The fluorescence quenching of TMCHA and HMCHA was caused by FRET and PET together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  1. Zulqarnain YMHM, Keong LK, Yasin NH, Rafeen MS, Hassan A, Srinivasan G, Yusup S, Shariff AM, Jaafar AB (2023) Recent development of integrating CO2 hydrogenation into methanol with ocean thermal energy conversion (OTEC) as potential source of green energy. Green Chem Lett Rev 1:2152740

    Article  Google Scholar 

  2. Mohan A, Al-Sayah MH, Ahmed A, El-Kadri OM (2022) Triazine-based porous organic polymers for reversible capture of iodine and utilization in antibacterial application. Sci Rep-UK 1:2638

    Article  Google Scholar 

  3. Harijan DKL, Chandra V, Yoon T, Kim KS (2018) Radioactive iodine capture and storage from water using magnetite nanoparticles encapsulated in polypyrrole. J Hazard Mater 344:576–584

    Article  CAS  PubMed  Google Scholar 

  4. Yang YL, Lai ZQ (2021) Ferrocene-based porous organic polymer for photodegradation of methylene blue and high iodine capture. Micropor Mesopor Mat 316:110929

    Article  CAS  Google Scholar 

  5. Dai DH, Yang J, Yong CZ, Wu JR, TanLL WY, Li B, Lu T, Wang B, Yang YW (2021) Macrocyclic Arenes-based conjugated macrocycle polymers for highly selective CO2 capture and iodine adsorption. Angew Chem Int Edit 16:8967–8975

    Article  Google Scholar 

  6. Zhang XR, Maddock J, Nenoff TM, Denecke MA, Yang SH, Schröder M (2022) Adsorption of iodine in metal–organic framework materials. Chem Soc Re 51:3243

    Article  CAS  Google Scholar 

  7. Muhire C, Reda AT, Zhang DX, Xu XY, Cui C (2022) An overview on metal oxide-based materials for iodine capture and storage. Chem Eng J 431:133816

    Article  CAS  Google Scholar 

  8. Pan RJ, Lin YL, Zhang TY, Wei XL, Dong ZY, Hu CY, Tang YL, Xu B (2023) Sequential combination of pre-chlorination and powdered activated carbon adsorption on iodine removal and I-THMs control in drinking water. Chemosphere 313:137529

    Article  CAS  PubMed  Google Scholar 

  9. Zhang Q, Yu JH, Corma A (2020) Applications of zeolites to C1 chemistry: recent Advances, challenges, and opportunities. Adv Mater 32:e2002927

    Article  PubMed  Google Scholar 

  10. Chen YM, Zhang L, Yang Y, Pang B, Xu WH, Duan GG, Jiang SH, Zhang K (2021) Recent progress on nanocellulose aerogels: preparation, modification, composite fabrication, applications. Adv Mater 33:e2005569

    Article  PubMed  Google Scholar 

  11. Yang XM, Xie D, Wang WH, Li SZ, Tang ZM, Dai SL (2023) An activated carbon from walnut shell for dynamic capture of high concentration gaseous iodine. Chem Eng J 454:140365

    Article  CAS  Google Scholar 

  12. Shi R, Huang YP, Yang YQ, Wu ZQ, Chen ZY, Ruan GH (2023) Synthesis of spherical amine-functionalized silica molecular sieve and application as selective adsorbents for aromatic hydrocarbons analysis. Microchem J 190:108638

    Article  CAS  Google Scholar 

  13. Huve J, Ryzhikov A, Nouali H, Lalia V, AugéG DTJ (2018) Porous sorbents for the capture of radioactive iodine compounds: a review. RSC Adv 51:29248–29273

    Article  Google Scholar 

  14. Zhan DY, Saeed A, Li ZX, Wang CM, Yu ZW, Wang JF, Zhao NJ, Xu WH, Liu JH (2020) Highly fluorescent scandium-tetracarboxylate frameworks: selective detection of nitro-aromatic compounds, sensing mechanism, and their application. Dalton T 48:17737–17744

    Article  Google Scholar 

  15. Desai V, Panchal M, Dey S, Panjwani F, Jain VK (2022) Recent advancements for the recognization of nitroaromatic explosives using calixarene based fluorescent probes. J Fluoresc 32:67–79

    Article  CAS  PubMed  Google Scholar 

  16. Garg AK, Dalal C, Kaushik J, Anand SR, Sonkar SK (2022) Selective sensing of explosive nitrophenol compounds by using hydrophobic carbon nanoparticles. Mater Today Sustain 20:100202

    Article  Google Scholar 

  17. Govindasamy S, Dhamodiran M, Balasubramaniam B, Ashish G, Kumar GR, Anand S (2021) Olefin-linked conjugated fluorescent oligomer: design, synthesis, photophysical studies and detection of nitroaromatic compounds (NACs) in aqueous media. Sensor Actuat A-Phys 331:113026

    Article  Google Scholar 

  18. Geng TM, Wang FQ, Fang XC, Xia HY (2022) An eight-membered cyclosiloxane conjugated microporous polymer performed a rapid and sensitive fluorescence detection of 2,4-dinitrophenol. Polym Advan Technol 9:2845–2854

    Article  Google Scholar 

  19. Giri D, Patra SK (2020) 1,2,3-Triazolyl functionalized thiophene, carbazole and fluorene based A-alt-B type π-conjugated copolymers for the sensitive and selective detection of aqueous and vapor phase nitroaromatics (NACs). J Mater Chem C 41:14469–14480

    Article  Google Scholar 

  20. Preiss A, Bauer A, Berstermann HM, Gerling S, Haas R, Joos A, Lehmann A, Schmalz L, Steinbach K (2009) Advanced high-performance liquid chromatography method for highly polar nitroaromatic compounds in ground water samples from ammunition waste sites. J Chromatogr A 1216:4968–4975

    Article  CAS  PubMed  Google Scholar 

  21. Ibrahim AA, Tiwari P, Al-Assiri MS, Al-Salami AE, Umar A, Kumar R, Ki SH, Ansari ZA, Baskoutas S (2017) A highly-sensitive picric acid chemical sensor based on ZnO nanopeanuts. Materials 7:795

    Article  Google Scholar 

  22. Chen N, Ding P, Shi Y, Jin TY, Su YY, Wang HY, He Y (2021) Portable and reliable surface-enhanced raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal Chem 89:5072–5078

    Article  Google Scholar 

  23. Calcerrada M, Herráez MG, Ruiz CG (2016) Recent advances in capillary electrophoresis instrumentation for the analysis of explosives. Trac-Trends Environ Anal 75:75–85

    Article  CAS  Google Scholar 

  24. Ma YQ, Zhang YY, Liu XJ, Zhang Q, Kong L, Tian YP, Li G, Zhang XJ, Yang JX (2019) AIE-active luminogen for highly sensitive and selective detection of picric acid in water samples: Pyridyl as an effective recognition group. Dyes Pigm 163:1–8

    Article  CAS  Google Scholar 

  25. Zhang YX (2023) The preparation of 2,2′-bithiophene-based conjugated microporous polymers by direct arylation polymerization and their application in fluorescence sensing 2,4-dinitrophenol. Anal Chim Acta 1240:340779

    Article  CAS  PubMed  Google Scholar 

  26. Luo SH, Zeng ZT, Wang H, Xiong WP, Song B, Zhou CY, Duan AB, Tan XF, He QY, Zeng GM, Liu ZF, Xiao R (2021) Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Prog Polym Sci 115:101374

    Article  CAS  Google Scholar 

  27. Xu YH, Jin SB, Xu H, Nagai A, Jiang DL (2013) Conjugated microporous polymers: design, synthesis and application. Chem Soc Rev 42:8012–8031

    Article  CAS  PubMed  Google Scholar 

  28. Novotney JL, Dichtel WR (2013) Conjugated porous polymers for TNT vapor detection. ACS Macro Lett 2:423–426

    Article  CAS  PubMed  Google Scholar 

  29. Xu YW, Zhong C, Zhang BY, Zhu HR, Mao YQ, Zhou MR, Zheng M, Liang SE, Kang B, Huang Y, Chang GJ (2023) Facile preparation of tetraphenylethylene-based porous polymer with dual role of adsorption and detection for trinitrotoluene. Polymer 288:126454

    Article  CAS  Google Scholar 

  30. Deng HY, Zhang BY, Xu YW, Zhang Y, Huo JC, Zhang L, Chang GJ (2020) A simple approach to prepare isoxazoline-based porous polymer for the highly effective adsorption of 2,4,6-trinitrotoluene (TNT): Catalyst-free click polymerization between an in situ generated nitrile oxide with polybutadiene. Chem Eng J 393:124674

    Article  CAS  Google Scholar 

  31. Zhong C, He PY, Yuan R, Sun Y, Deng HY, Zhang TH, Liang SE, Kang B, Chang GJ, Xu YW (2023) Hydrophobic porous polymer containing isoxazoline and siloxane groups for 2,4,6-trinitrotoluene (TNT) adsorption via synergistic effect of Lewis acid-base, dipole-π, and π-π interactions. J Non-Cryst Solids 602:122079

    Article  CAS  Google Scholar 

  32. Xu YW, Yang CY, Deng HY, Zhong C, He PY, Zhang TH, Sun Y, Yuan R, Liang SE, Kang B, Chang GJ (2023) Efficient adsorption of trinitrotoluene by isoxazoline-based porous polymers prepared from room-temperature stable bis(nitrile oxide). J Appl Polym Sci 13:e53678

    Article  Google Scholar 

  33. Lee JSM, Cooper AI (2020) Advances in conjugated microporous polymers. Chem Rev 4:2171–2214

    Article  Google Scholar 

  34. Kou Y, Xu YH, Guo ZQ, Jiang DL (2011) Supercapacitive energy storage and electric power supply using an Aza-fused p-Conjugated microporous framework. Angew Chem Int Ed 50:8753–8757

    Article  CAS  Google Scholar 

  35. Jiang JX, Li YY, Wu XF, Xiao JL, Adams DJ, Cooper AI (2013) Conjugated microporous polymers with rose Bengal dye for highly efficient heterogeneous organo-photocatalysis. Macromolecules 46:8779–8783

    Article  CAS  Google Scholar 

  36. Yang C, Ma BC, Zhang L, Lin S, Ghasimi S, Landfester K, Zhang KAI, Wang X (2016) Molecular engineering of conjugated polybenzothiadiazoles for enhanced hydrogen production by photosynthesis. Angew Chem Int Ed 55:9202–9206

    Article  CAS  Google Scholar 

  37. Dawson R, Stockel E, Holst JR, Adams DJ, Cooper AI (2011) Microporous organic polymers for carbon dioxide capture. Energ Environ Sci 4:4239–4245

    Article  CAS  Google Scholar 

  38. Basharat M, Abbas Y, Liu W, Ali Z, Zhang SK, Zou WQ, Wu ZP, Wu DZ (2019) Unusual excitation wavelength tunable multiple fluorescence from organocyclophosphazene microspheres: Crosslinked structure-property relationship. Polyme 185:121942

    Article  CAS  Google Scholar 

  39. Guo XH, Li Y, Zhang MC, Cao KC, Tian Y, Qi Y, Li SJ, Li K, Yu XQ, Ma LJ (2020) Colyliform crystalline 2D covalent organic frameworks with quasi-3D topologies for rapid I2 adsorption. Angew Chem Int Edit 50:22886–22894

    Article  Google Scholar 

  40. Lim A, Chew JJ, Ngu LH, Ismadji S, Khaerudini DS, Sunarso J (2020) Synthesis, characterization, adsorption isotherm, and kinetic study of oil palm trunk-derived activated carbon for tannin removal from aqueous solution. ACS Omega 44:28673–28683

    Article  Google Scholar 

  41. Wei MM, Zhang L, Xiong YQ, Li JH, Peng PA (2016) Nanopore structure characterization for organic-rich shale using the non-local-density functional theory by a combination of N2 and CO2 adsorption. Micropor Mesopor Mat 227:88–94

    Article  CAS  Google Scholar 

  42. Shetty S, Baig N, Alameddine B (2022) Synthesis and iodine adsorption properties of organometallic copolymers with propeller-shaped Fe(II) clathrochelates bridged by different diaryl thioether and their oxidized sulfone derivatives. Polymers 22:4818

    Article  Google Scholar 

  43. Geng TM, Zhang C, Liu M, Hu C, Chen GF (2020) Preparation of biimidazole-based porous organic polymers for ultrahigh iodine capture and formation of liquid complexes with iodide/polyiodide ions. J Mater Chem A 5:2820–2826

    Article  Google Scholar 

  44. Wang Y, Tao J, Xiong SH, Lu PG, Tang JT, He JQ, Javaid MU, Pan CY, Yu GP (2020) Ferrocene-based porous organic polymers for high-affinity iodine capture. Chem Eng J 380:122420

    Article  CAS  Google Scholar 

  45. Li XM, Chen G, Jia Q (2018) Highly efficient iodine capture by task-specific polyethylenimine impregnated hypercrosslinked polymers. J Taiwan Inst Chem E 9:660–666

    Article  Google Scholar 

  46. Yang JM, Kou YK (2021) Sulfo-modified MIL-101 with immobilized carbon quantum dots as a fluorescence sensing platform for highly sensitive detection of DNP. Inorg Chim Acta 519:120276

    Article  CAS  Google Scholar 

  47. Xu YH, Chen L, Guo ZQ, Nagai A, Jiang DL (2011) Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence. J Am Chem Soc 133:17622–17625

    Article  CAS  PubMed  Google Scholar 

  48. Geng TM, Li DK, Zhu ZM, Zhang WY, Ye SN, Zhu H, Wang ZQ (2018) Fluorescent conjugated microporous polymer based on perylene tetraanhydride bisimide for sensing o-nitrophenol. Anal Chim Acta 1011:77–85

    Article  CAS  PubMed  Google Scholar 

  49. Bryl K (2023) Fluorescence resonance energy transfer (FRET) as a spectroscopic ruler for the investigation of protein induced lipid membrane curvature: bacteriorhodopsin and bacteriorhodopsin analogs in model lipid membranes. Appl Spectrosc 2:187–199

    Article  Google Scholar 

  50. Gong WJ, Nan HR, Peng HB, Wang YQ, Dong ZM, Zhang ZB, Cao XH, Liu YH (2023) A ratiometric fluorescent sensor for UO22+ detection based on Ag+-modified gold nanoclusters hybrid via photoinduced electron transfer (PET) mechanism. Microchem J 190:108725

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Fund of Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials (under Grant No. ZD2021001).

Funding

The Open Fund of Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, ZD2021001, Tongmou Geng.

Author information

Authors and Affiliations

Authors

Contributions

Xia Zhang: Data curation; investigation; software; writing – original draft; Conceptualization. Yachen Wang: Data curation; investigation; software. Tongmou Geng: Data curation; investigation; software; funding aquisition; supervision, writing-review and editing.

Corresponding authors

Correspondence to Xia Zhang or Tongmou Geng.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 95 KB)

Supplementary file2 (DOCX 1698 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Wang, Y. & Geng, T. The synthesis of 4,4'-methylenebis(cyclohexylamine)-based porous organic polymers via nucleophilic substitution reactions for uptaking iodine and fluorescence sensing to dinitrophenol. J Polym Res 31, 106 (2024). https://doi.org/10.1007/s10965-024-03920-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03920-w

Keywords

Navigation