Skip to main content
Log in

Preparation of Thermo-sensitive oxidizable N-vinylcaprolactam-based terpolymers and their self-assembling property

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(N-vinylcaprolactam-co-hydroxyethyl acrylate-co-phenyl vinyl sulfide) (poly(VC-co-HEA-co-PVS)) and poly(N-vinylcaprolactam-co-N-vinylpyrrolidone-co-phenyl vinyl sulfide) (poly(VC-co-VP-co-PVS)) were synthesized as thermos-sensitive oxidizable terpolymers. The copolymerization was confirmed by the 1H-NMR and FT-IR spectroscopy. VC homopolymer exhibited its lower critical solution temperature (LCST) around 32 ℃. The copolymerization of HEA with VC and of VP with VC decreased and increased the LCST of VC homopolymer, respectively. The inclusion of PVS (an oxidizable monomer) in the copolymers decreased the LCST. The PVS of the copolymers could be oxidized by H2O2, solution (0.1%), evidenced by 1H-NMR spectroscopy. Upon the oxidation, the LCST of poly(VC-co-PVS) and poly(VC-co-HEA-co-PVS) increased markedly possibly due to an increase in the hydrophilicity of PVS. However, the LCST of poly(VC-co-VP-co-PVS) was not markedly affected by the oxidation. The interface activity of poly(VC-co-PVS) and poly(VC-co-HEA-co-PVS) slightly decreased but that of poly(VC-co-VP-co-PVS) markedly increased by the oxidation. The critical micelle concentration of the copolymers was determined by a fluorescence method, and it was 0.087 to 0.105 mg/mL. The micelles of the copolymers were found as circular objects on a transmission electron microscope. The mean hydrodynamic diameters of micelles were 107.4 to 471.6 nm, depending on the polymer composition. The PVS-containing copolymers formed larger micelles than VC homopolymer, possibly because the monomer could enhance an intermolecular hydrophobic interaction due to its phenyl group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pasparakis G, Vamvakaki M (2011) Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces. Polym Chem 2:1234–1248. https://doi.org/10.1039/C0PY00424C

    Article  CAS  Google Scholar 

  2. Torchilin V (2009) Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. Eur J Pharm Biopharm 71:431–444. https://doi.org/10.1016/j.ejpb.2008.09.026

    Article  CAS  PubMed  Google Scholar 

  3. Bennet D, Kim S (2014) Polymer nanoparticles for smart drug delivery. Appl Nanotechnol drug Deliv. https://doi.org/10.5772/58422

    Article  Google Scholar 

  4. Liu D, Yang F, Xiong F, Gu N (2016) The smart drug delivery system and its clinical potential. Theranostics 6:1306. https://doi.org/10.7150/thno.14858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dai J, Kim J (2014) Photo and thermal properties of cinnamoyl pluronic F-127. Polym Int 63:501–506. https://doi.org/10.1002/pi.4533

    Article  CAS  Google Scholar 

  6. Karimifard S, Rezaei N, Jamshidifar E et al (2022) pH-responsive chitosan-adorned niosome nanocarriers for co-delivery of drugs for breast cancer therapy. ACS Appl Nano Mater 5:8811–8825. https://doi.org/10.1021/acsanm.2c00861

    Article  CAS  Google Scholar 

  7. Ryu J-H, Roy R, Ventura J, Thayumanavan S (2010) Redox-sensitive disassembly of amphiphilic copolymer based micelles. Langmuir 26:7086–7092. https://doi.org/10.1021/la904437u

    Article  CAS  PubMed  Google Scholar 

  8. Ge J, Neofytou E, Cahill TJ III et al (2012) Drug release from electric-field-responsive nanoparticles. ACS Nano 6:227–233. https://doi.org/10.1021/nn203430m

    Article  CAS  PubMed  Google Scholar 

  9. Oliveira H, Pérez-Andrés E, Thevenot J et al (2013) Magnetic field triggered drug release from polymersomes for cancer therapeutics. J Control Release 169:165–170. https://doi.org/10.1016/j.jconrel.2013.01.013

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Yang P, Dai Y et al (2013) Multifunctional Up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual‐responsive drug controlled release. Adv Funct Mater 23:4067–4078. https://doi.org/10.1002/adfm.201300136

    Article  CAS  Google Scholar 

  11. Darge HF, Andrgie AT, Tsai H-C, Lai J-Y (2019) Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int J Biol Macromol 133:545–563. https://doi.org/10.1016/j.ijbiomac.2019.04.131

    Article  CAS  PubMed  Google Scholar 

  12. Wei H, Cheng S-X, Zhang X-Z, Zhuo R-X (2009) Thermo-sensitive polymeric micelles based on poly (N-isopropylacrylamide) as drug carriers. Prog Polym Sci 34:893–910. https://doi.org/10.1016/j.progpolymsci.2009.05.002

    Article  CAS  Google Scholar 

  13. Le M, Huang W, Chen K-F et al (2022) Upper critical solution temperature polymeric drug carriers. Chem Eng J 432:134354. https://doi.org/10.1016/j.cej.2021.134354

    Article  CAS  Google Scholar 

  14. Han HD, Shin BC, Choi HS (2006) Doxorubicin-encapsulated thermosensitive liposomes modified with poly (N-isopropylacrylamide-co-acrylamide): drug release behavior and stability in the presence of serum. Eur J Pharm Biopharm 62:110–116. https://doi.org/10.1016/j.ejpb.2005.07.006

    Article  CAS  PubMed  Google Scholar 

  15. Caddeo C, Pucci L, Gabriele M et al (2018) Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. Int J Pharm 538:40–47. https://doi.org/10.1016/j.ijpharm.2017.12.047

    Article  CAS  PubMed  Google Scholar 

  16. Chen D, Xia D, Li X et al (2013) Comparative study of Pluronic® F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats. Int J Pharm 449:1–9. https://doi.org/10.1016/j.ijpharm.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  17. Werzer O, Tumphart S, Keimel R et al (2019) Drug release from thin films encapsulated by a temperature-responsive hydrogel. Soft Matter 15:1853–1859. https://doi.org/10.1039/C8SM02529K

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339. https://doi.org/10.1016/j.addr.2012.09.024

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Detrembleur C, De Pauw-Gillet M-C et al (2014) Gold nanorods coated with a thermo-responsive poly (ethylene glycol)-b-poly (N-vinylcaprolactam) corona as drug delivery systems for remotely near infrared-triggered release. Polym Chem 5:799–813. https://doi.org/10.1039/C3PY01057K

    Article  CAS  Google Scholar 

  20. Zhao F, Wangpimool K, Kim J-C (2023) Near-infrared and Thermo-sensitive liposomes incorporating thiolated-carboxymethyl cellulose-capped gold nanoparticles and poly (N-isopropylacrylamide). Biotechnol Bioprocess Eng. https://doi.org/10.1007/s12257-022-0378-0

    Article  Google Scholar 

  21. Sun H, Zhang Q, Li J et al (2021) Near-infrared photoactivated nanomedicines for photothermal synergistic cancer therapy. Nano Today 37:101073. https://doi.org/10.1016/j.nantod.2020.101073

    Article  CAS  Google Scholar 

  22. An X, Zhang F, Zhu Y, Shen W (2010) Photoinduced drug release from thermosensitive AuNPs-liposome using a AuNPs-switch. Chem Commun 46:7202–7204. https://doi.org/10.1039/C0CC03142A

    Article  CAS  Google Scholar 

  23. Sershen SR, Westcott SL, Halas NJ, West JL (2000) Temperature-sensitive polymer–nanoshell composites for photothermally modulated drug delivery. J Biomed Mater Res an off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 51:293–298. https://doi.org/10.1002/1097-4636(20000905)51:3%3c293::AID-JBM1%3e3.0.CO;2-T

    Article  CAS  Google Scholar 

  24. Zhen S, Yi X, Zhao Z et al (2019) Drug delivery micelles with efficient near-infrared photosensitizer for combined image-guided photodynamic therapy and chemotherapy of drug-resistant cancer. Biomaterials 218:119330. https://doi.org/10.1016/j.biomaterials.2019.119330

    Article  CAS  PubMed  Google Scholar 

  25. Kim TH, Alle M, Park SC et al (2021) Self-assembly prepared using an ion pair of poly(ethylene imine) and (phenylthio) acetic acid as a drug carrier for oxidation, temperature, and NIR-responsive release. Chem Eng J 415:128954. https://doi.org/10.1016/j.cej.2021.128954

    Article  CAS  Google Scholar 

  26. Rodriguez YJ, Quejada LF, Villamil JC et al (2020) Development of amphotericin B micellar formulations based on copolymers of poly (ethylene glycol) and poly (ε-caprolactone) conjugated with retinol. Pharmaceutics 12:196. https://doi.org/10.3390/pharmaceutics12030196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Salem JK, El-Nahhal IM, Salama SF (2019) Determination of the critical micelle concentration by absorbance and fluorescence techniques using fluorescein probe. Chem Phys Lett 730:445–450. https://doi.org/10.1016/j.cplett.2019.06.038

    Article  ADS  CAS  Google Scholar 

  28. Goddard ED, Turro NJ, Kuo PL, Ananthapadmanabhan KP (1985) Fluorescence probes for critical micelle concentration determination. Langmuir 1:352–355. https://doi.org/10.1021/la00063a015

    Article  CAS  PubMed  Google Scholar 

  29. Park SC, Sharma G, Kim J-C (2022) Synthesis of temperature-responsive P(vinyl pyrrolidone-co-methyl methacrylate) micelle for controlled drug release. J Dispers Sci Technol 43:461–470. https://doi.org/10.1080/01932691.2021.2001344

    Article  CAS  Google Scholar 

  30. Ai H, Flask C, Weinberg B et al (2005) Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater 17:1949–1952. https://doi.org/10.1002/adma.200401904

    Article  CAS  Google Scholar 

  31. Li Y, Bastakoti BP, Malgras V et al (2015) Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes. Angew Chemie Int Ed 54:11073–11077. https://doi.org/10.1002/adma.200401904

    Article  CAS  Google Scholar 

  32. Marsili L, Dal Bo M, Eisele G et al (2021) Characterization of thermoresponsive poly-n-vinylcaprolactam polymers for biological applications. Polym (Basel) 13:1–15. https://doi.org/10.3390/polym13162639

    Article  CAS  Google Scholar 

  33. Song G, Lin Y, Zhu Z et al (2015) Strong fluorescence of poly (N-vinylpyrrolidone) and its oxidized hydrolyzate. Macromol Rapid Commun 36:278–285. https://doi.org/10.1002/marc.201400516

    Article  CAS  PubMed  Google Scholar 

  34. Wienk IM, Meuleman EEB, Borneman Z et al (1995) Chemical treatment of membranes of a polymer blend: mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone). J Polym Sci Part A Polym Chem 33:49–54. https://doi.org/10.1002/pola.1995.080330105

    Article  ADS  CAS  Google Scholar 

  35. De Maeyer L, Trachimow C, Kaatze U (1998) Entropy-driven micellar aggregation. J Phys Chem B 102:8480–8491. https://doi.org/10.1021/jp9807367

    Article  Google Scholar 

  36. Mehta SK, Bhasin KK, Chauhan R, Dham S (2005) Effect of temperature on critical micelle concentration and thermodynamic behavior of dodecyldimethylethylammonium bromide and dodecyltrimethylammonium chloride in aqueous media. Colloids Surf Physicochem Eng Asp 255:153–157. https://doi.org/10.1016/j.colsurfa.2004.12.038

    Article  CAS  Google Scholar 

  37. Xie L, Yang D, Lu Q et al (2020) Role of molecular architecture in the modulation of hydrophobic interactions. Curr Opin Colloid Interface Sci 47:58–69. https://doi.org/10.1016/j.cocis.2019.12.001

    Article  CAS  Google Scholar 

  38. Demirezen DA, Yılmaz Ş, Yılmaz DD, Yıldız YŞ (2022) Green synthesis of iron oxide nanoparticles using Ceratonia siliqua L. aqueous extract: improvement of colloidal stability by optimizing synthesis parameters, and evaluation of antibacterial activity against Gram-positive and Gram-negative bacteria. Int J Mater Res 113:849–861. https://doi.org/10.1515/ijmr-2022-0037

    Article  CAS  Google Scholar 

  39. Hasani Bijarbooneh F, Zhao Y, Kim JH et al (2013) Aqueous colloidal stability evaluated by Zeta potential measurement and resultant TiO2 for superior photovoltaic performance. J Am Ceram Soc 96:2636–2643. https://doi.org/10.1111/jace.12371

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2018R1A6A1A03025582). This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2022R1A2C2003353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Chul Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 903 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Son, H. & Kim, JC. Preparation of Thermo-sensitive oxidizable N-vinylcaprolactam-based terpolymers and their self-assembling property. J Polym Res 31, 57 (2024). https://doi.org/10.1007/s10965-024-03909-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03909-5

Keywords

Navigation