Skip to main content
Log in

Insight of super-capacitive properties of flexible gel polymer electrolyte containing butyl imidazole ionic liquids with different anions based on PVDF-HFP

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Supercapacitors based on ionic liquid gel polymer electrolytes (GPEs) have attracted considerable attention as a new energy storage device due to their good specific capacitance, good cycling capacity and stability. In this work, flexible gel polymer electrolyte (GPE) films were prepared and applied using three butyl imidazole ionic liquids with different anions as additives based on polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP). The structure and the mechanical properties of the GPE films and the electrical properties of the assembled symmetrical supercapacitors have been characterized. In particular, the structure–activity relationship between the structure and properties of the gel electrolyte was revealed by combining calculations with experiments. In particular, the structure–activity relationship between the structure and properties of the GPE was revealed through the combination of calculation and experiment. The results show that the electronegativity of the anions plays an important role in improving the stability and electrochemical properties of the gel system. This work is useful to further verify the influence of the anionic component of ionic liquids on the physical and chemical properties of gel electrolytes and to prepare more excellent solid electrolytes for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Chang Z, Feng D, Huang Z, Liu X (2018) Electrochemical deposition of highly loaded polypyrrole on individual carbon nanotubes in carbon nanotube film for supercapacitor. Chem Eng J 337:552–559. https://doi.org/10.1016/j.cej.2017.12.095

    Article  CAS  Google Scholar 

  2. Zhou H, Zhai H, Zhi X (2018) Enhanced electrochemical performances of polypyrrole/carboxyl graphene/carbon nanotubes ternary composite for supercapacitors. Electrochim Acta 290:1–11. https://doi.org/10.1016/j.electacta.2018.09.039

    Article  ADS  CAS  Google Scholar 

  3. Zhang B, Li J, Liu F, Wang T, Wang Y, Xuan R, Zhang G, Sun R, Wong C (2019) Self-Healable Polyelectrolytes with Mechanical Enhancement for Flexible and Durable Supercapacitors. Chem Eur J 25:11715–11724. https://doi.org/10.1002/chem.201902043

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Q, Li Y, Zhu J, Lan L, Li C, Mao J, Wang F, Zhang Z, Wang L (2021) Ultra-low temperature flexible supercapacitor based on hierarchically structured pristine polypyrrole membranes. Chem Eng J 420:129712. https://doi.org/10.1016/j.cej.2021.129712

    Article  CAS  Google Scholar 

  5. Choudhary RB, Ansari S, Purty B (2020) Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review. J Energy Storage 29:101302. https://doi.org/10.1016/j.est.2020.101302

    Article  Google Scholar 

  6. Rong Q, Lei W, Chen L, Yin Y, Zhou J, Liu M (2017) Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures. Angew Chem Int Ed 56:14159–14163. https://doi.org/10.1002/anie.201708614

    Article  CAS  Google Scholar 

  7. Han L, Liu K, Wang M, Wang K, Fang L, Chen H, Zhou J, Lu X (2018) Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater 28:1704195. https://doi.org/10.1002/adfm.201704195

    Article  CAS  Google Scholar 

  8. Dhanda M, Arora R, Ahlawat S, Nehra SP, Lata S (2022) Electrolyte as a panacea to contemporary scientific world of super-capacitive energy: A condense report. J Energy Storage 52:104740. https://doi.org/10.1016/j.est.2022.104740

    Article  Google Scholar 

  9. Bhat TS, Patil PS, Rakhi RB (2022) Recent trends in electrolytes for supercapacitors. J Energy Storage 50:104222. https://doi.org/10.1016/j.est.2022.104222

    Article  Google Scholar 

  10. Li L, Meng J, Zhang M, Liu T, Zhang C (2022) Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors. Chem Commun 58:185–207. https://doi.org/10.1039/D1CC05526G

    Article  CAS  Google Scholar 

  11. Cheng T, Zhang Y, Wang S, Chen Y, Gao S, Wang F, Lai W, Huang W (2021) Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv Funct Mater 31:2101303. https://doi.org/10.1002/adfm.202101303

    Article  CAS  Google Scholar 

  12. Wang Y, Chen F, Liu Z, Tang Z, Yang Q, Zhao Y, Du S, Chen Q, Zhi C (2019) A highly elastic and reversibly stretchable all-polymer supercapacitor. Angew Chem Int Ed 131:15854–158581. https://doi.org/10.1002/anie.201908985

    Article  ADS  CAS  Google Scholar 

  13. Shi P, Wang Y, Wan K, Zhang C, Liu T (2022) A waterproof ion-conducting fluorinated elastomer with 6000% stretchability, superior ionic conductivity, and harsh environment tolerance. Adv Funct Mater 32:2112293. https://doi.org/10.1002/adfm.202112293

    Article  CAS  Google Scholar 

  14. Gu J, Wang H, Li S, Muhammad SR, Ning J, Pu X, Hu Y (2023) Tuning pyridinic-N and graphitic-N doping with 4,40-bipyridine in honeycomb-like porous carbon and distinct electrochemical roles in aqueous and ionic liquid gel electrolytes for symmetric supercapacitors. J Colloid Interface Sci 635:254–264. https://doi.org/10.1016/j.jcis.2022.12.127

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Guptaa A, Jainb A, Tripathi SK (2020) Structural and electrochemical studies of bromide derived ionic liquid-based gel polymer electrolyte for energy storage application. J Energy Storage 32:101723. https://doi.org/10.1016/j.est.2020.101723

    Article  Google Scholar 

  16. Bao C, Wang B, Liu P, Wu H, Zhou Y, Wang D, Liu H, Dou S (2020) Solid Electrolyte Interphases on Sodium Metal Anodes. Adv Funct Mater 30:2004891. https://doi.org/10.1002/adfm.202004891

    Article  CAS  Google Scholar 

  17. Jamil R, Silvester D (2022) Ionic liquid gel polymer electrolytes for flexible supercapacitors: Challenges and prospects. Curr Opin Electrochem 35:101046. https://doi.org/10.1016/j.coelec.2022.101046

    Article  CAS  Google Scholar 

  18. Hu O, Lu J, Chen G, Chen K, Gu J, Weng S, Hou L, Zhang X, Jiang X (2021) An antifreezing, tough, rehydratable, and thermoplastic poly(vinyl alcohol)/sodium alginate/poly(ethylene glycol) organohydrogel electrolyte for flexible supercapacitors. ACS Sustainable Chem Eng 9:9833–9845. https://doi.org/10.1021/acssuschemeng.1c02464

    Article  CAS  Google Scholar 

  19. Feng M, Zhang Y, Zhu X, Chen W, Lu W, Wu G (2023) Interface-Anchored covalent organic Frameworks@AminoModified Ti3C2Tx MXene on Nylon 6 film for high-performance deformable supercapacitors. Angew Chem Int Ed 62:e202307195. https://doi.org/10.1002/anie.202307195

    Article  CAS  Google Scholar 

  20. Yang J, Kang X, Jiao J, Xing X, Yin Y, Jia S, Chu M, Han S, Xia W, Wu H, He M, Han B (2023) Ternary ionic-liquid-based electrolyte enables efficient electroreduction of CO2 over bulk metal electrodes. J Am Chem Soc 145:11512–11517. https://doi.org/10.1021/jacs.3c03259

    Article  CAS  PubMed  Google Scholar 

  21. Bai Y, Yang C, Yuan B, Li H, Chen W, Yin H, Zhao B, Shen F, Han X (2023) A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors. J Energy Chem 76:41–50. https://doi.org/10.1016/j.jechem.2022.09.015

    Article  CAS  Google Scholar 

  22. Yan N, Zheng Z, Liu Y, Jiang X, Wu J, Feng M, Xu L, Guan Q, Li H (2022) Photo-responsive shape memory polymer composites enabled by doping with biomass-derived carbon nanomaterials. Nano Res 15:1383–1392. https://doi.org/10.1007/s12274-021-3674-7

    Article  ADS  CAS  Google Scholar 

  23. He X, Wu D, Shang Y, Shen H, Xi S, Wang X, Li W, Wang Q (2022) Regenerated hydrogel electrolyte towards an all-gel supercapacitor. Sci China Mater 65:115–123. https://doi.org/10.1007/s40843-021-1712-y

    Article  CAS  Google Scholar 

  24. Wang Z, Wang L, Jiang W, Jian X, Hu F (2023) Development of flame-retardant ion-gel electrolytes for safe and flexible supercapacitors. Sci China Mater 66:3129–3138. https://doi.org/10.1007/s40843-023-2470-3

    Article  CAS  Google Scholar 

  25. Wu M, Wang X, Xia Y, Zhu Y, Zhu S, Jia C, Guo W, Li Q, Yan Z (2022) Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95:106967. https://doi.org/10.1016/j.nanoen.2022.106967

    Article  CAS  Google Scholar 

  26. Yong H, Park H, Jung C (2020) Quasi-solid-state gel polymer electrolyte for a wide temperature range application of acetonitrile-based supercapacitors. J Power Sources 447:227390. https://doi.org/10.1016/j.jpowsour.2019.227390

    Article  CAS  Google Scholar 

  27. Bhat Y, Hashmi SA (2022) Mixture of non-ionic and organic ionic plastic crystals immobilized in poly (vinylidene fluoride-co-hexafluoropropylene): A flexible gel polymer electrolyte composition for high performance carbon supercapacitors. J Energy Storage 51:104514. https://doi.org/10.1016/j.est.2022.104514

    Article  Google Scholar 

  28. Shalu CSK, Singh RK, Chandra S (2013) Thermal Stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and Ionic Liquid, [BMIM][BF4]. J Phys Chem B 117:897–906. https://doi.org/10.1021/jp307694q

    Article  CAS  PubMed  Google Scholar 

  29. Liu C, Wang X, Zhang H, You X, Yue O (2021) Self-healable, high-strength hydrogel electrode for flexible sensors and supercapacitors. ACS Appl Mater Interfaces 13:36240–36252. https://doi.org/10.1021/acsami.1c03335

    Article  CAS  PubMed  Google Scholar 

  30. Han J, Choi Y, Lee J, Pyo S, Jo S, Yoo J (2021) UV curable ionogel for all-solid-state supercapacitor. Chem Eng J 416:129089. https://doi.org/10.1016/j.cej.2021.129089

    Article  CAS  Google Scholar 

  31. Wang J, Li X, Yang J, Sun W, Ban Q, Gai L, Gong Y, Xu Z, Liu L (2021) Flame-retardant, highly conductive, and low-temperature-resistant organic gel electrolyte for high-performance all-solid supercapacitors. Chemsuschem 14:2056–2066. https://doi.org/10.1002/cssc.202100141

    Article  CAS  PubMed  Google Scholar 

  32. Chaney LE, Hyun WJ, Khalaj M, Hui J, Hersam MC (2023) Fully printed, high-temperature micro-supercapacitor arrays enabled by a hexagonal boron nitride ionogel electrolyte. Adv Mater 2305161. https://doi.org/10.1002/adma.202305161

  33. Wu W, Dong S, Zhang X, Hao J (2022) Gel electrolytes and aerogel electrodes from ILs-based emulsions for supercapacitor applications. Chem Eng J 446:137328. https://doi.org/10.1016/j.cej.2022.137328

    Article  CAS  Google Scholar 

  34. Hu P, Duan Y, Hu D, Qin B, Zhang J, Wang Q, Liu Z, Cui G, Chen L (2015) A rigid-flexible coupling high ionic conductivity polymer electrolyte for an enhanced performance of LiMn2O4/graphite battery at elevated temperature. ACS Appl Mater Interfaces 7:4720–4727. https://doi.org/10.1021/am5083683

    Article  CAS  PubMed  Google Scholar 

  35. Akbar ZA, Malik YT, Kim DH, Cho S, Jang SY, Jeon JW (2022) Self-healable and stretchable ionic-liquid-based thermoelectric composites with high ionic seebeck coefficient. Small 18:2106937. https://doi.org/10.1002/smll.202106937

    Article  CAS  Google Scholar 

  36. Feng L, Wang K, Zhang X, Sun X, Li C, Ge X, Ma Y (2017) Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv Funct Mater 28:1704463. https://doi.org/10.1002/adfm.201704463

    Article  CAS  Google Scholar 

  37. Wang N, Zhang G, Guan T, Wu J, Wang J, Li K (2022) Microphase separation engineering toward 3D porous carbon assembled from nanosheets for flexible all solid-state supercapacitors. ACS Appl Mater Interfaces 14:13250–13260. https://doi.org/10.1021/acsami.1c23624

    Article  CAS  PubMed  Google Scholar 

  38. Ma L, Kang C, Fu L, Cao S, Zhu H, Liu Q (2022) Core-shell Ni1.5Sn@Ni(OH)2 nanoflowers as battery-type supercapacitor electrodes with high rate and capacitance. J Colloid Interface Sci 613:244–255. https://doi.org/10.1016/j.jcis.2022.01.054

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Aziz MA, Shah SS, Nayem SMA, Shaikh MN, Hakeem AS, Bakare IA (2022) Peat soil-derived silica doped porous graphitic carbon with high yield for high performance all-solid-state symmetric supercapacitors. J Energy Storage 50:104278. https://doi.org/10.1016/j.est.2022.104278

    Article  Google Scholar 

  40. Sun Z, Xie X, Xu W, Chen K, Liu Y, Chu X, Niu Y, Zhang S, Ren C (2021) Chameleon-Inspired energy-saving smart window responding to natural weather. ACS Sustainable Chem Eng 9:12949–12959. https://doi.org/10.1021/acssuschemeng.1c04413

    Article  CAS  Google Scholar 

  41. Tao X, Liu Y, Liu W, Zhou G, Zhao J, Lin D, Zu C, Sheng O, Zhang W, Lee HW, Cui Y (2017) Solid-state lithium–sulfur batteries operated at 37 °c with composites of nanostructured Li7La3Zr2O12/Carbon foam and polymer. Nano Lett 17:2967–2972. https://doi.org/10.1021/acs.nanolett.7b00221

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Du P, Dong Y, Dong Y, Wang X, Zhang H (2022) Fabrication of uniform MnO2 layer-modified activated carbon cloth for high-performance flexible quasi-solid state asymmetric supercapacitor. J Mater Sci 57:3497–3512. https://doi.org/10.1007/s10853-021-06728-x

    Article  ADS  CAS  Google Scholar 

  43. Du P, Dong Y, Kang H, Li J, Niu J, Liu P (2020) Superior cycle stability carbon layer encapsulated polyaniline nanowire core-shell nanoarray free-standing electrode for high performance flexible solid-state supercapacitors. J Power Sour 449:227477. https://doi.org/10.1016/j.jpowsour.2019.227477

    Article  CAS  Google Scholar 

  44. Song Z, Duan H, Li L, Zhu D, Cao T, Lv Y, Xiong W, Wang Z, Liu M, Gan L (2019) High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chem Eng J 372:1216–1225. https://doi.org/10.1016/j.cej.2019.05.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from Foundation of Liaoning Province Education Administration (Grant no. LJKMZ20221807).

Funding

Foundation of Liaoning Province Education Administration,LJKMZ20221807,Hongxia Liu.

Author information

Authors and Affiliations

Authors

Contributions

Xiaoze Sun: Writing—Original Draft, Conceptualization, Methodology, Formal analysis. Hongxia Liu: Investigation, Software, Funding acquisition.

Corresponding author

Correspondence to Xiaoze Sun.

Ethics declarations

Ethical approval

Not Applicable.

Conflicts of interest or competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Liu, H. Insight of super-capacitive properties of flexible gel polymer electrolyte containing butyl imidazole ionic liquids with different anions based on PVDF-HFP. J Polym Res 31, 53 (2024). https://doi.org/10.1007/s10965-024-03907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03907-7

Keywords

Navigation