Skip to main content
Log in

Fabrication of weakly basic-functionalized poly(styrene-co-maleic anhydride) hyper-cross-linked resins for the efficient adsorption of organic acid

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Herein, four hyper-cross-linked amide resins (DMDs) were synthesized by suspension polymerization and amination reaction. In the process of suspension polymerization, different feed ratios of divinylbenzene (DVB) and maleic anhydride (MAH) generated macroporous interpenetrating network resins (DMH) with different pore structures. After chemical modification of DMH with N,N’-dimethyl-1,3-propanediamine (DMAPA), the weak base exchange ability of the resulting resins was significantly improved, with values of 1.01 mmol/g (DMD1), 1.15 mmol/g (DMD2), 1.22 mmol/g (DMD3), and 1.34 mmol/g (DMD4), respectively. Salicylic acid (SA), benzoic acid (BA), gallic acid (GA), and phenol (PHE) were selected as adsorbents to investigate the adsorption performance of the resins. At 288 K, the maximum capacity (qmax) of SA, BA, and GA on the DMD4 were 193.7 mg/g, 143.8 mg/g, and 145.2 mg/g, respectively. The adsorption of BA and GA reached equilibrium within 100 min, and the kinetic data could be described using the pseudo second order (PSO) rate model. DMD4 resin had high adaptability for adsorbing salicylic acid in both aqueous and isopropanol solutions. This universal suspension polymerization synthesis method was of great significance for synthesizing other functionalized hyper-cross-linked polymers, and this weak alkaline functionalization strategy was universal for the amination modification of other resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang W, Ma F, Ma L, Zhou Y, Wang J (2020) Imidazolium-functionalized ionic hypercrosslinked porous polymers for efficient synthesis of cyclic carbonates from simulated Flue Gas. Chemsuschem 13:341–350

    Article  CAS  PubMed  Google Scholar 

  2. Fu Y, Huang X, Zhong S, Yi W, Li L (2019) A new chloromethylation method based on polystyrene-divinylbenzene. Chem Pap 73:2183–2188

    Article  CAS  Google Scholar 

  3. Peng X, Yang P, Dai K, Chen Y, Chen X, Zhuang W, Ying H, Wu J (2020) Synthesis, adsorption and molecular simulation study of methylamine-modified hyper-cross-linked resins for efficient removal of citric acid from aqueous solution. Sci Rep 10:9623

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rohr T, Knaus S, Gruber H, Sherrington D (2001) Preparation and porosity characterization of hyper-cross-linked polymer resins derived from multifunctional (Meth)acrylate monomers. Macromolecules 35:97–105

    Article  ADS  Google Scholar 

  5. Zhang W, Hong C, Pan B, Zhang Q, Jiang P, Jia K (2009) Sorption enhancement of 1-naphthol onto a hydrophilic hyper-cross-linked polymer resin. J Hazard Mater 163:53–57

    Article  CAS  PubMed  Google Scholar 

  6. Fu Y, Kong Y, Wang Y, Cao Y, Zhong S, Xu M, Lei T, Huang J (2023) Phenolic hydroxyl functionalized hyper-crosslinked polymers and their efficient adsorption. Sep Purif Technol 318:123817

    Article  CAS  Google Scholar 

  7. Liao H, Fu Y, Hu H, Zhu M, Xu M, Zhong S (2022) Boron removal from water and wastewater using new polystyrene-based resin grafted with trometamol and 3-amino-1, 2-propanediol. J Chem Soc Pak 44:33–39

    CAS  Google Scholar 

  8. Kuang W, Liu Y, Huang J (2017) Phenol-modified hyper-cross-linked resins with almost all micro/mesopores and their adsorption to aniline. J Colloid Interface Sci 487:31–37

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Yuan S, Zhang S, Zou W, Zhou Y, Zhou X (2008) Facile synthesis and characterization of novel pseudo-hypercrosslinked resin. Chin Chem Lett 19:611–614

    Article  CAS  Google Scholar 

  10. Wang X, Fu Z, Yu N, Huang J (2016) A novel polar-modified post-cross-linked resin: Effect of the porogens on the structure and adsorption performance. J Colloid Interface Sci 466:322–329

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zeng X, Chen H, Zheng Y, Tao W, Fan Y, Huang L, Mei L (2012) Enhanced adsorption of puerarin onto a novel hydrophilic and polar modified post-crosslinked resin from aqueous solution. J Colloid Interface Sci 385:166–173

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Castaldo R, Avolio R, Cocca M, Errico M, Avella M, Gentile G (2021) Amino-functionalized hyper-crosslinked resins for enhanced adsorption of carbon dioxide and polar dyes. Chem Eng J 418:129463

    Article  CAS  Google Scholar 

  13. Moradi M, Penchah H, Ghaemi A (2023) CO2 capture by benzene-based hypercrosslinked polymer adsorbent: Artificial neural network and response surface methodology. Can J Chem Eng 101:5621–5642

    Article  CAS  Google Scholar 

  14. You X, Wang Y, Han L, Liu Q, Fei Z, Chen X, Zhang Z, Tang J, Cui M, Qiao X (2023) Reinforced rhodamine b adsorption on the hyper-cross-linked resin co-modified by pyridine and carboxyl groups. Microporous Mesoporous Mater 349:112423

    Article  CAS  Google Scholar 

  15. Sun Y, Zheng W, Singh R, Chen L (2019) Grafting of Poly(4-vinylpyridine) onto a Macroporous Resin for Sorption of 2-Naphthalenesulfonic acid in batch experiments. J Chem Eng Data 64:3170–3178

    Article  CAS  Google Scholar 

  16. Cao Y, Wang Y, Zhou F, Huang J, Xu M (2022) Acylamino-functionalized hyper crosslinked polymers for efficient adsorption removal of phenol in aqueous solution. Sep Purif Technol 303:122229

    Article  CAS  Google Scholar 

  17. Ouyang Y, Wu D, Fu R (2013) Graphene oxide-supported two-dimensional microporous polystyrene. MRS Proc 1549:25–29

    Article  Google Scholar 

  18. Wang Y, Shu Z, Zeng X, Kuang W, Huang J (2020) Fabrication of O-enriched HyperCrossLinked polymers and their adsorption of Aniline from Aqueous Solution. Ind Eng Chem Res 59:11705–11712

    Article  CAS  Google Scholar 

  19. Zhang J, Yuan M, Jia C (2022) Efficient adsorption separation of succinic acid with a novel resin derived from styrene/methyl acrylate/vinyl acetate terpolymer. React Funct Polym 175:105262

    Article  CAS  Google Scholar 

  20. Zhou Q, Wang M, Li A, Shuang C, Zhang M, Liu X, Wu L (2013) Preparation of a novel anion exchange group modified hyper-crosslinked resin for the effective adsorption of both tetracycline and humic acid. Front Environ Sci Eng 7:412–419

    Article  CAS  Google Scholar 

  21. Jalili K, Abbasi F, Ghasemi M, Haddadi E (2009) Preparation and characterization of Expandable St/MMA copolymers produced by suspension polymerization. J Cell Plast 45:197–224

    Article  CAS  Google Scholar 

  22. Xiao J, Lu Q, Cong H, Shen Y, Yu B (2021) Microporous poly(glycidyl methacrylate-co-ethylene glycol dimethyl acrylate) microspheres: synthesis, functionalization and applications. Polym Chem 12:6050–6070

    Article  CAS  Google Scholar 

  23. Mizutani Y, Matsuoka S (1981) Preparation of fine powdery copolymer of styrene-maleic anhydride-DVB. J Appl Polym Sci 26:2113–2116

    Article  CAS  Google Scholar 

  24. Ogawa N, Honmyo N, Harada K, Sugii A (1984) Preparation of spherical polymer beads of maleic anhydride–styrene–DVB and metal sorption of its derivatives. J Appl Polym Sci 29:2851–2856

    Article  CAS  Google Scholar 

  25. Okay O (1987) Porous maleic anhydride–styrene–DVB copolymer beads. J Appl Polym Sci 34:307–317

    Article  CAS  Google Scholar 

  26. Fu Y, Cao Y, Wang Y, Li M, Zhong S, Xu M, Lei T, Huang J (2023) Facile synthesis of 2,6-di-tert-butylphenol modified polystyrene and its antioxidative properties as the heterogeneous antioxidant. J Polym Res 30:27

    Article  CAS  Google Scholar 

  27. Zhu M, Wang X, Huang Y, Yue L, Zhong S, Zeng L (2022) Synthesis of thiol-functionalized resin and its adsorption of heavy metal ions. J Appl Polym Sci 139:e52976

    Article  CAS  Google Scholar 

  28. Fu Y, Duan W, Chen J, Wang Y, Cao Y, Wang B, Zhong S, Xu M, Huang J, Lei T (2023) Synthesis of sulfhydryl-functionalized polymers for the efficient adsorption of Pd2+ and Ag+ from aqueous solution. J Polym Sci 1

  29. Langmuir I (1917) The constitution and fundamental properties of solids and liquids. J Franklin Inst 183:102–105

    Article  Google Scholar 

  30. Freundlich H (1906) Over the adsorption in solution. J Phys Chem A 57:385–470

    CAS  Google Scholar 

  31. Lima E, Hosseini-Bandegharaei A, Moreno-Piraján J, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434

    Article  CAS  Google Scholar 

  32. Meng Z, Lv F, Zhang Y, Zhang Z, Ai S (2015) Modified Na-Montmorillonite With Quaternary Ammonium Salts: Application for Removal of Salicylic Acid From Aqueous Solutions. CLEAN - Soil, Air, Water 43:1150–1156

    Article  CAS  Google Scholar 

  33. Hasan Z, Cho D, Nam I, Chon C, Song H (2016) Hocheol Preparation of Calcined Zirconia-Carbon Composite from Metal Organic frameworks and its application to Adsorption of Crystal Violet and Salicylic Acid. Materials 9:261

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  34. Otero M, Grande C, Rodrigues A (2004) Adsorption of salicylic acid onto polymeric adsorbents and activated charcoal. Reactive and Fuctional Polymers 60:203–213

    Article  CAS  Google Scholar 

  35. Wang X, Yuan X, Han S, Zha H, Sun X, Huang J, Liu Y (2013) Aniline modified hypercrosslinked polystyrene resins and their adsorption equilibriums, kinetics and dynamics towards salicylic acid from aqueous solutions. Chem Eng J 233:124–131

    Article  CAS  Google Scholar 

  36. Xiao G, Li H, Xu M (2013) Adsorption of salicylic acid in aqueous solution by a water-compatible hyper-cross-linked Resin functionalized with Amino-Group. J Appl Polym Sci 127:3858–3863

    Article  CAS  Google Scholar 

  37. Deokar S, Jadhav A, Pathak P, Mandavgane S (2022) Biochar from microwave pyrolysis of banana peel: characterization and utilization for removal of benzoic and salicylic acid from aqueous solutions. Biomass Conversion and Biorefinery

  38. Xiao G, Wen R, Wei D (2016) Effects of the hydrophobicity of adsorbate on the adsorption of salicylic acid and 5-sulfosalicylic acid onto the hydrophobic-hydrophilic macroporous polydivinylbenzene/polymethylacrylethylenediamine IPN. Fluid Phase Equilib 421:33–38

    Article  CAS  Google Scholar 

  39. Meng M, He Z, Yan L, Yan Y, Sun F, Liu Y, Liu S (2015) Fabrication of a novel cellulose acetate imprinted membrane assisted with chitosan-wrapped multi-walled carbon nanotubes for selective separation of salicylic acid from industrial wastewater. J Appl Polym Sci 132:42654

    Article  Google Scholar 

  40. Wang J, Teng Y, Jia S, Li W, Yang T, Cheng Y, Zhang H, Li X, Li L, Wang C (2023) Highly efficient removal of salicylic acid from pharmaceutical wastewater using a flexible composite nanofiber membrane modified with UiO-66(hf) MOFs. Appl Surf Sci 625:157183

    Article  CAS  Google Scholar 

  41. Wang X, Wang Y, Feng L, Liu P, Zhang X (2012) A novel adsorbent based on functionalized three-dimensionally ordered macroporous cross-linked polystyrene for removal of salicylic acid from aqueous solution. Chem Eng J 203:251–258

    Article  CAS  Google Scholar 

  42. Essandoh M, Kunwar B, Pittman C, Mohan D, Mlsna T (2015) Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem Eng J 265:219–227

    Article  CAS  Google Scholar 

  43. Zhang X, Gao C, Wang R, Aryee A, Han R (2023) Study on adsorption of salicylic acid and sulfosalicylic acid by MOF-sodium alginate gel beads obtained in a green way. Int J Biol Macromol 253:127535

    Article  CAS  PubMed  Google Scholar 

  44. Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  45. Ho Y (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    Article  CAS  PubMed  Google Scholar 

  46. Fu Y, Gong H, Su S, Lei T, Zhong S (2023) Fabrication of O–enriched macroporous polymer for the efficient adsorption organic acid from aqueous solution. J Polym Res 30:441

    Article  CAS  Google Scholar 

  47. Fu Y, Liang J, Xiao J, Su S, Xu M, Lei T, Zhong S (2024) Preparation of phenolic hydroxyl-modified hyper-crosslinked polymers and their adsorption performance towards small molecular aromatic amines. Sep Purif Technol 332:125733

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province (NO. 2018TP1017) and Open Foundation of National &Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources (NO. KF201804).

Funding

Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, 2018TP1017, Shihua Zhong, Open Foundation of National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, KF201804, Shihua Zhong.

Author information

Authors and Affiliations

Authors

Contributions

Yiqing Wang: Data curation, writing-original draft, methodology, and investigation. Shihua Zhong: Supervision,writing-review & editing.

Corresponding author

Correspondence to Shihua Zhong.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhong, S. Fabrication of weakly basic-functionalized poly(styrene-co-maleic anhydride) hyper-cross-linked resins for the efficient adsorption of organic acid. J Polym Res 31, 47 (2024). https://doi.org/10.1007/s10965-024-03890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03890-z

Keywords

Navigation