Skip to main content

Advertisement

Log in

Genesis of an ecofriendly An + B3 hyperbranched polyester from Poly (ethylene glycol) and aconitic acid for application as flocculant

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hyperbranched polyesters with polyionic character and high hydrodynamic sizes were synthesized at four different monomer mole ratios (An/B3 = 1:0.5, 1:1, 1: 3 and 1:5) by melt condensation of ecofriendly Poly (ethylene glycol) or PEG and Aconitic acid or AA via An+ B3 approach. The products were characterized by FTIR, 1H NMR, FESEM, TEM and DSC techniques to establish the microstructure as well as the hyperbranched architecture. The degree of branching was estimated to be within 89%-33% by 1H NMR measurements. Polyesters synthesized from 1:3 and 1:5 contained low (12%) to moderately high (40%) crosslinked structure as well. Gelation was effectively avoided at 1:0.5 and 1:3 mol compositions by keeping the AA content at lower values than PEG. The most soluble hyperbranched polyester was spherical having a dense core and a higher shell morphology. Whereas, the more crosslinked molecule was spherical but uniformly dense. Due to of the polyelectrolytic nature, the polyesters were used as flocculant to unsettle highly stable kaolin suspension at low suspension concentration maintained at 0.25% concentration by weight. The highest hydrodynamic size of the sample synthesized from 1:1 mole composition, was able to flocculate at the fastest rate (39 s) at pH 2.0 than at the iso-electric point (pH 4.2) of kaolin as well as reproduced the pure water with highest clarity (turbidity: 4 NTU).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Khazaie A, Mazarji M, Samali B, Osborne D, Minkina T, Sushkova S, Mandzhieva S, Soldatov AV (2022) A review on Coagulation/Flocculation in dewatering of coal slurry. Water 14(6):918. https://doi.org/10.3390/w14060918

    Article  CAS  Google Scholar 

  2. Obaideen K, Shehata N, Sayed ET, Abdelkareem MA, Mahmoud MS, Abdelkareem MA (2022) The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus 7:100112. https://doi.org/10.1016/j.nexus.2022.100112

    Article  Google Scholar 

  3. Kolya H, Kang C (2023) Bio-based polymeric flocculants and adsorbents for wastewater treatment. Sustainability 15(12):9844. https://doi.org/10.3390/su15129844

    Article  CAS  Google Scholar 

  4. Koul B, Yadav D, Singh S, Kumar M, Song M (2022) Insights into the Domestic Wastewater Treatment (DWWT) regimes: a review. Water 14(21):3542. https://doi.org/10.3390/w14213542

    Article  CAS  Google Scholar 

  5. Al-Tohamy R, Ali SS, Li F, Okasha K, Mahmoud YA, Elsamahy T, Jiao H, Fu Y, Sun J (2022) A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf 231:113160. https://doi.org/10.1016/j.ecoenv.2021.113160

    Article  CAS  PubMed  Google Scholar 

  6. Saravanan A, Kumar PS, Jeevanantham S, Karishma S, Tajsabreen B, Yaashikaa P, Reshma B (2021) Effective water/wastewater treatment methodologies for toxic pollutants removal: processes and applications towards sustainable development. Chemosphere 280:130595. https://doi.org/10.1016/j.chemosphere.2021.130595

    Article  CAS  PubMed  Google Scholar 

  7. Das N, Ojha N, Mandal SK (2021) Wastewater treatment using plant-derived bioflocculants: green chemistry approach for safe environment. Water Sci Technol Apr 83(8):1797–1812. https://doi.org/10.2166/wst.2021.100

    Article  CAS  Google Scholar 

  8. Badawi AK, Zaher K (2021) Hybrid treatment system for real textile wastewater remediation based on coagulation/flocculation, adsorption and filtration processes: performance and economic evaluation. J Water Process Eng 40:101963. https://doi.org/10.1016/j.jwpe.2021.101963

    Article  Google Scholar 

  9. Madrid FM, Arancibia-Bravo MP, Sepúlveda FD, Lucay FA, Soliz A, Cáceres L (2023) Ultrafine kaolinite removal in recycled water from the overflow of thickener using electroflotation: a novel application of saline water splitting in mineral processing. Molecules 28(9):3954. https://doi.org/10.3390/molecules28093954

  10. Adeniyi AG, Iwuozor KO, Emenike EC (2023) Material development potential of Nigeria’s Kaolin. Chem Afr 6(4):1709–1725. https://doi.org/10.1007/s42250-023-00642-2

    Article  Google Scholar 

  11. Detho A, Kadir AA, Rosli MA (2023) Zeolite as an adsorbent reduces ammoniacal nitrogen and COD in rubber processing industry effluents. Water Air Soil Pollut 234(11):677. https://doi.org/10.1007/s11270-023-06704-y

    Article  ADS  CAS  Google Scholar 

  12. Nieto S, Piceros E, Toledo PG, Robles P, Jeldres R (2023) Compressive Yield Stress of Flocculated Kaolin Suspensions in Seawater. Polymers (Basel) 15(3):530. https://doi.org/10.3390/polym15030530

  13. Li X (2022) Selective flocculation performance of amphiphilic quaternary ammonium salt in kaolin and bentonite suspensions. Colloids Surf a 636:128140. https://doi.org/10.1016/j.colsurfa.2021.128140

    Article  CAS  Google Scholar 

  14. Bhatti QA, Baloch MK, Schwarz S, Ishaq M (2023) Impact of mechanochemical treatment on surface chemistry and flocculation of kaolinite dispersion. Asia-Pac J Chem Eng 18(3):e2886. https://doi.org/10.1002/apj.2886

    Article  CAS  Google Scholar 

  15. Shoaib M, Bobicki ER (2021) Rheological implications of pH induced particle–particle association in aqueous suspension of an anisotropic charged clay. Soft Matter 17(34):7822–7834. https://doi.org/10.1039/d1sm00702e

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Nasim T, Pal A, Bandyopadhyay A (2018) Flocculation of aqueous kaolin suspension using a biodegradable flocculant system of poly (vinyl alcohol)- Acacia nilotica gum blends. Appl Clay Sci 152:83–92. https://doi.org/10.1016/j.clay.2017.10.035

    Article  CAS  Google Scholar 

  17. Moud AA, Hatzikiriakos SG (2022) Kaolinite colloidal suspensions under the influence of sodium dodecyl sulfate. Phys Fluids 34(1):013107. https://doi.org/10.1063/5.0082218

    Article  ADS  CAS  Google Scholar 

  18. Shahid MH, Maqbool N, Khan SJ (2022) An integrated investigation on anaerobic membrane-based thickening of fecal sludge and the role of extracellular polymeric substances (EPS) in solid-liquid separation. J Environ Manage 305:114350. https://doi.org/10.1016/j.jenvman.2021.114350

    Article  CAS  PubMed  Google Scholar 

  19. Sirajudheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S (2021) Applications of chitin and Chitosan-based biomaterials for the adsorptive removal of textile dyes from water — a comprehensive review. Carbohydr Polym 273:118604. https://doi.org/10.1016/j.carbpol.2021.118604

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Ying Y, Weichu (2022) Synthesis of Hyperbranched polymers and prospects for application in Oilfield Chemistry. Front Energy Res 10. https://doi.org/10.3389/fenrg.2022.894096

  21. Xu Y, Gan K, Liang S, Liu H, Wang Q (2021) Investigation and Optimization of Chitosan Performance in Flocculating Kaolin Suspensions Using a Real-Time Suspending Solid Concentration Measuring Method Water 13 no. 4:513. https://doi.org/10.3390/w13040513

    Article  CAS  Google Scholar 

  22. Lei Wang Q-M, Lu T, Zeng J-W, Yang X-Q, Zhang H-B (2022) Synthesis and characterization of a cationic dextran-based flocculant and its application in bacterial sedimentation. Biochem Eng J 185:108535. https://doi.org/10.1016/j.bej.2022.108535

    Article  CAS  Google Scholar 

  23. Momina, Ahmad K, Rafatullah M (2023) Applications of biodegradable polymer nanocomposites in water and wastewater treatment. In Elsevier eBooks (pp. 515–553). https://doi.org/10.1016/b978-0-323-91696-7.00003-9

  24. Elgarahy AM, Eloffy M, Guibal E, Alghamdi HM, Elwakeel KZ (2023) Use of biopolymers in wastewater treatment: a brief review of current trends and prospects. Chin J Chem Eng 64:292–320. https://doi.org/10.1016/j.cjche.2023.05.018

    Article  Google Scholar 

  25. Subhadeep Chakraborty S, Dutta R, Chatterjee J, Chanda S, Pal A, Bandyopadhyay (2023) Flocculation of low concentration kaolin suspension using architecturally modified Xanthan gum: Effect of grafting to hyperbranching. J Taiwan Inst Chem Eng 150:105066. https://doi.org/10.1016/j.jtice.2023.105066

    Article  CAS  Google Scholar 

  26. Ahmadi Y, Kim K (2022) Hyperbranched polymers as superior adsorbent for the treatment of dyes in water. Adv Colloid Interface Sci 302:102633. https://doi.org/10.1016/j.cis.2022.102633

    Article  CAS  PubMed  Google Scholar 

  27. Tardy BL, Mattos BD, Otoni CG, Beaumont M, Majoinen J, Kämäräinen T, Rojas OJ (2021) Deconstruction and reassembly of renewable polymers and biocolloids into next generation structured materials. Chem Rev 121(22):14088–14188. https://doi.org/10.1021/acs.chemrev.0c01333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gomte SS, Jadhav PV, Jothi Prasath VRN, Agnihotri TG, Jain A (2023) From lab to ecosystem: understanding the ecological footprints of engineered nanoparticles. J Environ Sci Health Part A 1–41. https://doi.org/10.1080/26896583.2023.2289767

  29. Abdelhamid AE, Kandil H (2022) Facile approach to synthesis super-adsorptive hydrogel based on hyperbranched polymer for water remediation from methylene blue. React Funct Polym 177:105312. https://doi.org/10.1016/j.reactfunctpolym.2022.105312

    Article  CAS  Google Scholar 

  30. Wang Y, Kotsuchibashi Y, Liu Y, Narain R (2014) Temperature-responsive hyperbranched amine-based polymers for solid–liquid separation. Langmuir 30(9):2360–2368. https://doi.org/10.1021/la5003012

    Article  CAS  PubMed  Google Scholar 

  31. Xu K, Wang H, Liang X, Tan Y, Yao X, Wang P (2017) A novel hyperbranched polymeric flocculant for Waste-Water treatment. J Polym Environ 26(7):2782–2792. https://doi.org/10.1007/s10924-017-1120-4

    Article  CAS  Google Scholar 

  32. Sun D, Zeng J, Yang D, Qiu X, Liu W (2023) Full biomass-based multifunctional flocculant from lignin and cationic starch. Int J Biol Macromol 253:127287. https://doi.org/10.1016/j.ijbiomac.2023.127287

    Article  CAS  PubMed  Google Scholar 

  33. Tsujimoto A, Uehara H, Yoshida H, Nishio M, Furuta K, Inui T, Matsumoto A, Morita S, Tanaka M, Kojima C (2021) Different hydration states and passive tumor targeting ability of polyethylene glycol-modified dendrimers with high and low PEG density. Mater Sci Engineering: C 126:112159. https://doi.org/10.1016/j.msec.2021.112159

    Article  CAS  Google Scholar 

  34. Geng C, Zhang J, Gu M, Li J, Tang S, Guo Q, Zhang Y, Zhang W, Li Y, Huang X, Lü X (2023) Microbial production of trans-aconitic acid. Metab Eng 78:183–191. https://doi.org/10.1016/j.ymben.2023.06.007

    Article  CAS  PubMed  Google Scholar 

  35. Mukherjee A, Sengupta S, Singha B, Chatterjee R, Chakraborty S, Singh A, Goswami L, Bandyopadhyay A (2023) Ratiometric synthesis of non-traditional polyesters from poly (ethylene glycol) and trimesic acid tethering bioapplication. J Polym Res 30(8):299. https://doi.org/10.1007/s10965-023-03664-z

    Article  CAS  Google Scholar 

  36. Namata F, Del Olmo NS, Molina N, Malkoch M (2023) Synthesis and characterization of amino-functional polyester dendrimers based on Bis-MPA with enhanced Hydrolytic Stability and inherent Antibacterial properties. Biomacromol 24(2):858–867. https://doi.org/10.1021/acs.biomac.2c01286

    Article  CAS  Google Scholar 

  37. Karatas O, Keyikoğlu R, Gengec NA, Vatanpour V, Khataee A (2022) A review on dendrimers in preparation and modification of membranes: progress, applications, and challenges. Mater Today Chem 23:100683. https://doi.org/10.1016/j.mtchem.2021.100683

    Article  CAS  Google Scholar 

  38. Cao H, Zheng Y, Zhou J, Wang W, Pandit A (2010) A novel hyperbranched polyester made from aconitic acid (B3) and di(ethylene glycol) (A2). Polym Int 60(4):630–634. https://doi.org/10.1002/pi.2993

    Article  CAS  Google Scholar 

  39. Nasim T, Panda AB, Bandyopadhyay A (2013) Guar gum and guar gum-oligomeric poly(vinyl alcohol) blends as novel flocculants for kaolinated waste water. Int J Biol Macromol 58:140–147. https://doi.org/10.1016/j.ijbiomac.2013.03.069

    Article  CAS  PubMed  Google Scholar 

  40. Giri A, Bhunia T, Mishra SR, Goswami L, Panda AB, Pal S, Bandyopadhyay A (2013) Acrylic acid grafted guargum–nanosilica membranes for transdermal diclofenac delivery. Carbohydr Polym 91(2):492–501. https://doi.org/10.1016/j.carbpol.2012.08.035

    Article  CAS  PubMed  Google Scholar 

  41. Mohammed ACL, Sheffield SB, Elrod MJ (2022) Kinetics study of acid-catalyzed sulfate esterification reactions for atmospherically relevant polyols. ACS Earth and Space Chemistry 6(12):3115–3122. https://doi.org/10.1021/acsearthspacechem.2c00306

    Article  ADS  CAS  Google Scholar 

  42. Noordzij GJ, Wilsens CHRM (2019) Cascade AZA-Michael Addition-Cyclizations; toward renewable and multifunctional carboxylic acids for Melt-Polycondensation. Front Chem 7:729. https://doi.org/10.3389/fchem.2019.00729

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sopčák T, Medvecký Ľ, Giretová M, Štulajterová R, Brus J, Urbanová M, Kromka F, Podobová M, Fáberová M (2021) Fabrication of a glycerol-citrate polymer coated tricalcium phosphate bone cements: structural investigation and material properties. J Polym Res 28(6). https://doi.org/10.1007/s10965-021-02596-w

  44. Vakili M, Gholami F, Zwain HM, Wang W, Mojiri A, Martı́N T, Cagnetta G, Gholizadeh R, Dastyar W, Gholami Z (2023) Removal of GenX by APTES functionalized diepoxyoctane cross-linked chitosan beads. J Environ Chem Eng 11(5):110539. https://doi.org/10.1016/j.jece.2023.110539

    Article  CAS  Google Scholar 

  45. Azzaoui K, Jodeh S, Mejdoubi E, Hammouti B, Taleb M, Ennabety G, Berisha A, Aaddouz M, Youssouf MH, Shityakov S, Sabbahi R, Algarra M (2023) Synthesis of hydroxyapatite/polyethylene glycol 6000 composites by novel dissolution/precipitation method: optimization of the adsorption process using a factorial design: DFT and molecular dynamic. BMC Chem 17(1). https://doi.org/10.1186/s13065-023-01061-7

  46. Sutiawan J, Hermawan D, Massijaya MY, Kusumah SS, Lubis MaR, Marlina R, Purnomo D, Sulastiningsih IM (2021) Influence of different hot-pressing conditions on the performance of eco-friendly jabon plywood bonded with citric acid adhesive. Wood Mater Sci Eng 17(6):400–409. https://doi.org/10.1080/17480272.2021.1884898

    Article  CAS  Google Scholar 

  47. Thirunavukkarasu M, Balaji G, Muthu S, Raajaraman B, Ramesh P (2021) Computational spectroscopic investigations on structural validation with IR and Raman experimental evidence, projection of ultraviolet-visible excitations, natural bond orbital interpretations, and molecular docking studies under the biological investigation on N-Benzyloxycarbonyl-L-Aspartic acid 1-Benzyl ester. Chem Data Collections 31:100622. https://doi.org/10.1016/j.cdc.2020.100622

    Article  CAS  Google Scholar 

  48. Comparison of anticancer effects of carvone (2021) Carvone-Rich essential oils, and chitosan nanoparticles containing each of them. Biointerface Res Appl Chem 12(4):5716–5726. https://doi.org/10.33263/briac124.57165726

    Article  CAS  Google Scholar 

  49. Yang X, Ai L, Yu J, Waterhouse GI, Sui L, Ding J, Zhang B, Yong X, Lu S (2022) Photoluminescence mechanisms of red-emissive carbon dots derived from non-conjugated molecules. Sci Bull 67(14):1450–1457. https://doi.org/10.1016/j.scib.2022.06.013

    Article  CAS  Google Scholar 

  50. Cai Z, Zhang J, Ma Y, Wu W, Cao Y, Huang K, Jiang L (2022) Chelation-activated multiple-site reversible chemical absorption of ammonia in ionic liquids. AIChE J 68(5). https://doi.org/10.1002/aic.17632

  51. Tzereme A, Christodoulou E, Kyzas GZ, Kostoglou M, Bikiaris DN, Lambropoulou DA (2019) Chitosan Grafted adsorbents for Diclofenac Pharmaceutical compound removal from single-component aqueous solutions and mixtures. Polymers 11(3):497. https://doi.org/10.3390/polym11030497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jumaah MA, Salih N, Salimon J (2021) Optimization for esterification of saturated palm fatty acid distillate by D-optimal design response surface methodology for biolubricant production. Turk J Chem 45(5):1391–1407. https://doi.org/10.3906/kim-2103-11

    Article  CAS  Google Scholar 

  53. Zhang J, Pang C, Wu G (2016) Crosslinkable polyesters based on monomers derived from renewable lignin. RSC Adv 6(14):11848–11854. https://doi.org/10.1039/c5ra26155d

    Article  ADS  CAS  Google Scholar 

  54. Ejaz S, Ejaz S, Shahid R, Nооr T, Shabbir S, Imran M (2022) Chitosan-Curcumin complexation to develop functionalized nanosystems with enhanced antimicrobial activity against hetero-resistant gastric pathogen. Int J Biol Macromol 204:540–554. https://doi.org/10.1016/j.ijbiomac.2022.02.039

    Article  CAS  PubMed  Google Scholar 

  55. Lee HY, Seok JH, Lee J, Lee W, Iwata T (2023) One-pot synthesis of cellulose ester–graft–polylactide copolymers in an ionic liquid and the effect of graft-chain composition on their thermoplasticities and enzymatic degradabilities. Polym Degrad Stab 214:110401. https://doi.org/10.1016/j.polymdegradstab.2023.110401

    Article  CAS  Google Scholar 

  56. Weinland DH, Van Der Maas K, Wang Y, Pergher BB, Van Putten R, Wang B, Gruter GM (2022) Overcoming the low reactivity of biobased, secondary diols in polyester synthesis. Nat Commun 13(1). https://doi.org/10.1038/s41467-022-34840-2

  57. Sengupta S, Das T, Ghorai UK, Bandyopadhyay A (2017) Copolymers from methyl methacrylate and butyl acrylate with hyperbranched architecture. J Appl Polym Sci 134(42):45356. https://doi.org/10.1002/app.45356

    Article  CAS  Google Scholar 

  58. Gao S, Jiang J, Li X, Ye F, Fu Y, Zhao L (2021) Electrospun Polymer-Free nanofibers incorporating Hydroxypropyl-Β-cyclodextrin/Difenoconazole via supramolecular assembly for antifungal activity. J Agric Food Chem 69(21):5871–5881. https://doi.org/10.1021/acs.jafc.1c01351

    Article  CAS  PubMed  Google Scholar 

  59. Ashrafizadeh M, Tam KC, Javadi A, Abdollahi M, Sadeghnejad S, Bahramian A (2020) Dual physically and chemically cross-linked polyelectrolyte nanohydrogels: compositional and pH-dependent behavior studies. Eur Polymer J 122:109398. https://doi.org/10.1016/j.eurpolymj.2019.109398

    Article  CAS  Google Scholar 

  60. Zentel KM, Degenkolb J, Busch M (2020) Using a Multiscale Modeling Approach to correlate reaction conditions with polymer microstructure and Rheology. Macromol Ther Simul 30(1). https://doi.org/10.1002/mats.202000047

  61. Michailidou G, Zamboulis A, Bikiaris DN (2023) Exploring the blends’ miscibility of a Novel Chitosan Derivative with enhanced antioxidant properties; prospects for 3D Printing Biomedical Applications. Mar Drugs 21(7):370. https://doi.org/10.3390/md21070370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Scheutz GM, Elgoyhen J, Bentz KC, Xia Y, Sun H, Zhao J, Savin DA, Sumerlin BS (2021) Mediating covalent crosslinking of single-chain nanoparticles through solvophobicity in organic solvents. Polym Chem 12(31):4462–4466. https://doi.org/10.1039/d1py00780g

    Article  CAS  Google Scholar 

  63. Parray ZA, Ahmad F, Chaudhary AA, Rudayni HA, Al-Zharani M, Hassan MI, Islam A (2022) Size-Dependent Interplay of Volume Exclusion Versus Soft Interactions: Cytochrome c in Macromolecular Crowded Environment. Front Mol Biosci 9:849683. https://doi.org/10.3389/fmolb.2022.849683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jones CD, Simmons HTD, Horner KE, Liu K, Thompson RL, Steed JW (2019) Braiding, branching and chiral amplification of nanofibres in supramolecular gels. Nat Chem 11(4):375–381. https://doi.org/10.1038/s41557-019-0222-0

    Article  CAS  PubMed  Google Scholar 

  65. Ni J, Li M, Li C, Zhong Z, Xi H, Wu Y (2023) Stem-cell based soft tissue substitutes: Engineering of crosslinked polylysine‐hyaluronic acid microspheres ladened with gingival mesenchymal stem cells for collagen tissue regeneration and angiogenesis. J Periodontol 94(12):1436–1449. https://doi.org/10.1002/jper.22-0747

    Article  CAS  PubMed  Google Scholar 

  66. González-Martínez I, Weinel K, Feng W, Jácome LA, Gemming T, Büchner B (2023) Hybrid tungsten–carbon 2D nanostructures via in situ gasification of carbon substrates driven by ebeam irradiation of WO2.9 microparticles. Nanotechnology 34(49):495602. https://doi.org/10.1088/1361-6528/acf584

    Article  Google Scholar 

  67. Montoya-Ospina MC, Verhoogt H, Osswald TA (2021) Processing and rheological behavior of cross‐linked polyethylene containing disulfide bonds. SPE Polym 3(1):25–40. https://doi.org/10.1002/pls2.10062

    Article  CAS  Google Scholar 

  68. Avella A, Idström A, Mincheva R, Nakayama K, Evenäs L, Raquez J, Lo Re G (2022) Reactive melt crosslinking of cellulose nanocrystals/poly(ε-caprolactone) for heat-shrinkable network. Compos Part A: Appl Sci Manufac 163:107166. https://doi.org/10.1016/j.compositesa.2022.107166

    Article  CAS  Google Scholar 

  69. Nasim T, Pal A, Giri A, Goswami L, Bandyopadhyay A (2014) Exploring polyelectrolytic features of the exudate from native Acacia nilotica for flocculating aqueous kaolin suspension. Sep Purif Technol 131:50–59. https://doi.org/10.1016/j.seppur.2014.04.037

    Article  CAS  Google Scholar 

  70. Nasim T, Bandyopadhyay A (2012) Introducing different poly (vinyl alcohol)s as new flocculant for kaolinated waste water. Sep Purif Technol 88:87–94. https://doi.org/10.1016/j.seppur.2011.12.016

    Article  CAS  Google Scholar 

  71. Xu R, Zou W, Wang T, Huang J, Zhang Z, Xu C (2022) Adsorption and interaction mechanisms of Chi-g-P(AM-DMDAAC) assisted settling of kaolinite in a two-step flocculation process. Sci Total Environ 816:151576. https://doi.org/10.1016/j.scitotenv.2021.151576

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Chakraborty S, Dutta B, Ghosh N, Halder SK, Chatterjee R, Sengupta S, Pal S, Bandyopadhyay A (2023) Strategic grafting of poly METAC and polyacrylamide onto xanthan gum for flocculating kaolin at lower concentration. Mater Today Commun 34:105091. https://doi.org/10.1016/j.mtcomm.2022.105091

    Article  CAS  Google Scholar 

  73. Feng Q, Gao B, Guo K (2021) Flocculation performance of papermaking sludge-based flocculants in different dye wastewater treatment: comparison with commercial lignin and coagulants. Chemosphere 262:128416. https://doi.org/10.1016/j.chemosphere.2020.128416

    Article  CAS  PubMed  Google Scholar 

  74. Wang D, Wang D, Deng C, Wang K, Tan X, Liu Q (2022) Flocculation of quartz by a dual polymer system containing tannic acid and poly (ethylene oxide): Effect of Polymer chemistry and hydrodynamic conditions. Chem Eng J 446:137403. https://doi.org/10.1016/j.cej.2022.137403

    Article  CAS  Google Scholar 

  75. Diniz V, Rath S (2023) Adsorption of aqueous phase contaminants of emerging concern by activated carbon: comparative fixed-bed column study and in situ regeneration methods. J Hazard Mater 459:132197. https://doi.org/10.1016/j.jhazmat.2023.132197

    Article  CAS  PubMed  Google Scholar 

  76. Zhao Y, Fan Q, Liu Y, Wang S, Guo X, Guo L, Zhu M, Wang X (2023) Preparation and application of amino-terminated hyperbranched magnetic composites in High-Turbidity water treatment. Molecules 28(19):6787. https://doi.org/10.3390/molecules28196787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kang S, Liu W, Wang S, Wang Y, Wu S, Chen S, Yan B, Lan X (2022) Starch-derived flocculant with hyperbranched brush architecture for effectively flocculating organic dyes, heavy metals and antibiotics. J Taiwan Inst Chem Eng 135:104383. https://doi.org/10.1016/j.jtice.2022.104383

    Article  CAS  Google Scholar 

  78. Zewdie TM, Prihatiningtyas I, Dutta A, Habtu NG, Van Der Bruggen B (2021) Characterization and beneficiation of Ethiopian kaolin for use in fabrication of ceramic membrane. Mater Res Express 8(11):115201. https://doi.org/10.1088/2053-1591/ac2f75

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Bandyopadhyay.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Ecofriendly hyperbranched polyester (maximum branching extent of 89%) with polyionic character (zeta potential, 0.639 at pH 2.0) and high hydrodynamic size (average diameter of 295.3, ± 6.5 at pH) were synthesized.

• Highest flocculability was exhibited at acidic pH (2.0) by the polyester having highest branching and hydrodynamic size.

•  The flocculation was primarily influenced by viscoelastic adsorption driven bridging mechanism instead of charge neutralisation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Chakraborty, S., Sengupta, S. et al. Genesis of an ecofriendly An + B3 hyperbranched polyester from Poly (ethylene glycol) and aconitic acid for application as flocculant. J Polym Res 31, 39 (2024). https://doi.org/10.1007/s10965-024-03889-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03889-6

Keywords

Navigation