Skip to main content
Log in

Flexible polylactic acid/polyethylene glycol@erucamide microfibrous packaging with ordered fiber orientation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The synergistic effect that arises from blending functional agents with ordered fiber orientated structures is a noteworthy strategy to improve the mechanical properties, flexibility and waterproof performance of polylactic acid microfibrous fabrics. A promising polylactic acid/polyethylene glycol@erucamide (PLA/PEG@Era) microfibrous fabric with an ordered fiber orientation was successfully prepared by blending Era with PLA, followed by composite preparation processes of melt blowing and stretching. The results of the study revealed that the blended PLA/PEG@Era polymer with an Era mass ratio of 1.5% exhibited a higher relative degree of crystallinity of about 18.64% in comparison to the PLA/PEG polymer with a crystallinity degree of 2.24%. Moreover, the prepared fabrics exhibited a pleasant microfibrous nonwoven structure with an ordered, regular and a compensating fiber distribution, obtained by facile tailing of the stretching ratio. Also, the samples showed a high tensile breaking strength of 41.1 N with a good vapor permeability, ranging from 2537.2 g/(m2·day) to 2136.9 g/(m2·day), in addition to its excellent waterproof performance and softness. The study provides sufficient evidence that the developed PLA/PEG@Era microfibrous fabrics are extremely suitable candidates for packaging and outdoor clothing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zhang H, Zhai Q, Guan X, Zhen Q, Qian X (2023) Tri-layered bicomponent microfilament composite fabric for highly efficient cold protection. Small 19(44):2303820. https://doi.org/10.1002/smll.202303820

  2. Gabryś T, Fryczkowska B, Grzybowska-Pietras J, Biniaś D (2021) Modification and properties of cellulose nonwoven fabric—multifunctional mulching material for agricultural applications. Materials 14(15):4335. https://doi.org/10.3390/ma1415433

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  3. Shetty D, Shetty N (2019) Investigation of mechanical properties and applications of polylactic acids—A review. Mater Res Express 6(11):112002. https://doi.org/10.1088/2053-1591/ab4648

    Article  ADS  CAS  Google Scholar 

  4. Ullah MS, Yazıcı N, Wis AA, Özkoç G, Kodal M (2022) A review on polyhedral oligomeric silsesquioxanes as a new multipurpose nanohybrid additive for poly(lactic acid) and poly(lactic acid) hybrid composites. Polym Compos 43:1252. https://doi.org/10.1002/pc.26483

    Article  CAS  Google Scholar 

  5. Malafeev KV, Moskalyuk OA, Kamalov AM et al (2023) Formation and stability of the conducting cluster in the composite filaments based on polylactide and carbon nanofibers. Polym Comp 44(9):5804-5818. https://doi.org/10.1002/pc.27528

  6. Taib N-AAB, Rahman MR, Huda D (2022) A review on poly lactic acid (PLA) as a biodegradable polymer. Polym Bull 80(2):1179–1213. https://doi.org/10.1007/s00289-022-04160-y

    Article  CAS  Google Scholar 

  7. Wang R, Zhang H, Cao Y (2023) Preparation of PLA/PEG@SDS microfibers‐based nonwovens via melt‐blown process parameters: Wound dressings with enhanced water wetting performance. J Appl Polym Sci 140(31):e54234. https://doi.org/10.1002/app.54234

  8. Zhang H, Zhen Q, Liu ZY, Cui JQ, Qian XM (2022) Facile fabrication of polylactic acid/polyethylene glycol micro-nano fabrics with aligned fibrous roughness for enhancing liquid anisotropic wetting performance via double-stage drafting melt blowing process. Colloids Surf, A 648:129174. https://doi.org/10.1016/j.colsurfa.2022.129174

    Article  CAS  Google Scholar 

  9. Xia L, Cheng BW, Xi P, Zhuang XP, Zhao YX, Liu Y, Kang WM, Ren YL (2020) Research progres-s of flash spinning nano/micro-fiber nonwoven technology. J Text Res 41(08):166–171. https://doi.org/10.13475/j.fzxb.20200303306

    Article  CAS  Google Scholar 

  10. Hu SZ, Deng YF, Li L (2023) Biomimetic polylactic acid electrospun fibers grafted with polyethyleneimine for highly efficient methyl orange and Cr(VI) removal. Langmuir 39:3770. https://doi.org/10.1021/acs.langmuir.2c03508

    Article  CAS  PubMed  Google Scholar 

  11. Wu JH, Hu TG, Wang H, Zong MH, Wu H, Wen P (2022) Electrospinning of PLA nanofibers: Recent advances and its potential application for food packaging. J Agric Food Chem 70:8207. https://doi.org/10.1021/acs.jafc.2c02611

    Article  CAS  PubMed  Google Scholar 

  12. Fan Y, Miao X, Hou C, Wang J, Lin J, Bian F (2023) High tensile performance of PLA fiber-reinforced PCL composite via a synergistic process of strain and crystallization. Polymer 270:125778. https://doi.org/10.1016/j.polymer.2023.125778

  13. Alothman OY, Awad S, Siakeng R (2023) Fabrication and characterization of polylactic acid/natural fiber extruded composites. Polym Eng Sci 63:1234. https://doi.org/10.1002/pen.26278

    Article  CAS  Google Scholar 

  14. Wang Z, Liu T, Yang J (2022) Biomimetically structured poly(lactic acid)/poly(butylene-adipate-co-terephthalate) blends with ultrahigh strength and toughness for structural application. ACS Appl Polym Mater 4:9351. https://doi.org/10.1021/acsapm.2c01606

    Article  CAS  Google Scholar 

  15. Zhao X, Pelfrey A, Pellicciotti A, Koelling K, Vodovotz Y (2023) Synergistic effects of chain extenders and natural rubber on PLA thermal, rheological, mechanical and barrier properties. Polymer 269:125712. https://doi.org/10.1016/j.polymer.2023.125712

  16. Zhang S, Liu H, Yin X, Yu J, Ding B (2016) Anti-deformed polyacrylonitrile/polysulfone composite membrane with binary structures for effective air filtration. ACS Appl Mater Interfaces 8(12):8086–8095. https://doi.org/10.1021/acsami.6b00359

    Article  CAS  PubMed  Google Scholar 

  17. Simonini L, Mahmood H, Dorigato A, Pegoretti A (2023) Tailoring the physical properties of poly(lactic acid) through the addition of thermoplastic polyurethane and functionalized short carbon fibers. Polym Compos. https://doi.org/10.1002/pc.27435

    Article  Google Scholar 

  18. Zhu Y, Gu X, Dong Z (2023) Regulation of polylactic acid using irradiation and preparation of PLA-SiO(2)-ZnO melt-blown nonwovens for antibacterial and air filtration. RSC Adv 13:7857. https://doi.org/10.1039/d2ra08274h

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu G, Guan J, Wang X, Yu J, Ding B (2023) Melt-blown nonwovens with superior mechanical properties. ACS Sustain Chem Eng 11:4279. https://doi.org/10.1021/acssuschemeng.3c00159

    Article  CAS  Google Scholar 

  20. Gao H, Liu G, Guan J, Wang X, Yu J, Ding B (2023) Biodegradable hydro-charging polylactic acid melt-blown nonwovens with efficient PM0.3 removal. Chem Eng J 458:141412. https://doi.org/10.1016/j.cej.2023.141412

  21. Chai J, Wang G, Zhang A (2022) Ultra-ductile and strong in-situ fibrillated PLA/PTFE nanocomposites with outstanding heat resistance derived by CO2 treatment. Compos Part A Appl Sci Manuf 155. https://doi.org/10.1016/j.compositesa.2022.106849

  22. Zhang H, Zhen Q, Cao Y, Gan Y, Yang Z, Qian X (2023) Soft, strong, and breathable polylactic acid/polyethylene glycol microfibrous membranes with a fluffy alignment structure for skin contactor. Text Res J 00405175231173156. https://doi.org/10.1177/00405175231173156

  23. Li H, Zhang H, Hu JJ et al (2022) Facile preparation of hydrophobic PLA/PBE micro-nanofiber fabrics via the melt-blown process for high-efficacy oil/water separation. Polymers 14(9):1667. https://doi.org/10.3390/polym14091667

  24. Avila Orta CA, Covarrubias Gordillo CA, Fonseca Florido HA, Melo Lopez L, Radillo Ruiz R, Gutierrez Montiel E, Fonseca-Florido HA et al (2023) PLA/modified-starch blends and their application for the fabrication of non-woven fabrics by melt-blowing. Carbohydr Polym 316:120975. https://doi.org/10.1016/j.carbpol.2023.120975

  25. Hu R, Huang Q, Liu G (2023) Polylactic Acid/Calcium Stearate Hydrocharging Melt-Blown Nonwoven Fabrics for Respirator Applications. ACS Appl Polym Mater 5:4372. https://doi.org/10.1021/acsapm.3c00500

    Article  CAS  PubMed  Google Scholar 

  26. Lee J, Kim B, Lee JW, Hong CY, Kim GH, Lee SJ (2022) Bioinspired Fatty Acid Amide-Based Slippery Oleogels for Shear-Stable Lubrication. Adv Sci (Weinh) 9:e2105528. https://doi.org/10.1002/advs.202105528

    Article  CAS  PubMed  Google Scholar 

  27. Jia T, Tian H, Liu S (2022) Erucamide/thermoplastic polyurethane blend with low coefficient of frict-ion, high elasticity and good mechanical properties for intelligent wearable devices. Polym Int. https://doi.org/10.1002/pi.6483

    Article  Google Scholar 

  28. Gubala D, Fox LJ, Harniman R (2021) Heads or tails: Nanostructure and molecular orientations in organised erucamide surface layers. J Colloid Interface Sci 590:506. https://doi.org/10.1016/j.jcis.2021.01.087

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Wang R, Zhang H, Cao Y, Zhai Q, Hu J, Zhen Q, Qian X (2023) Preparation of PLA/PEG@ SDS microfibers-based nonwovens via melt-blown process parameters: Wound dressings with enhanced water wetting performance. J Appl Polym Sci 140(31):e54234. https://doi.org/10.1002/app.54234

    Article  CAS  Google Scholar 

  30. Aliotta L, Vannozzi A, Canesi I (2021) Poly(lactic acid) (PLA)/Poly(butylene succinate-co-adipate) (PBSA) compatibilized binary biobased blends: Melt fluidity, morphological, thermo-Mechanical and micromechanical analysis Polymers 13(2):218. https://doi.org/10.3390/polym13020218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao Z, Li G, Liu C, Li H, Lin J (2022) The carbon nanotubes effects on the morphology and properties of poly(lactic) acid/poly(butylene adipate-co-terephthalate) blends. Polym Compos 43(12):8725–8736. https://doi.org/10.1002/pc.27053

    Article  CAS  Google Scholar 

  32. Liu YL, Gu WW, Wei JF, Wang WQ, Wang R (2022) Research progress and status quo of heat-resistant polylactic acid materials. Journal of Textile Research 43(06):180–186. https://doi.org/10.13475/j.fzxb.20210104707

    Article  CAS  Google Scholar 

  33. Park DI, Dong Y, Wang S, Lee SJ, Choi HJ (2023) Rheological Characteristics of Starch-Based Biodegradable Blends. Polymers 15(8):1953. https://doi.org/10.3390/polym15081953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu T, Cai C, Ma R, Deng Y, Tu L, Fan Y, Lu D (2021) Super-hydrophobic cellulose nanofiber air filter with highly efficient filtration and humidity resistance. ACS Appl Mater Interfaces 13(20):24032–24041. https://doi.org/10.1021/acsami.1c04258

    Article  CAS  PubMed  Google Scholar 

  35. Zhang YJ, Chen LJ, Zhang SD (2023) Preparation of high melt index polylactic acid masterbatch an-d spinnability of its meltblown materials. Journal of Textile Research 44(02):55–62. https://doi.org/10.13475/j.fzxb.20220808108

    Article  Google Scholar 

  36. Chang L, Zhou Y, Dai K (2023) The effect of process parameters on the properties of elastic melt blown nonwovens: Air pressure and DCD. J Appl Polym Sci 140(2):e53308. https://doi.org/10.1002/app.53308

    Article  CAS  Google Scholar 

  37. Yu Y, Shim E (2021) Process-structure-property relationship of meltblown poly (styrene–ethylene/butylene–styrene) nonwovens. J Appl Polym Sci 138:50230. https://doi.org/10.1002/app.50230

    Article  CAS  Google Scholar 

  38. Echeverría C, Limón I, Muñoz-Bonilla A (2021) Development of Highly Crystalline Polylactic Acid with β-Crystalline Phase from the Induced Alignment of Electrospun Fibers. Polymers 13(17):2860. https://doi.org/10.3390/polym13172860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gao H, Liu G, Guan J, Wang X, Yu J, Ding B (2023) Biodegradable hydro-charging polylactic acidmelt-blown nonwovens with efficient PM0.3 removal. Chem Eng J 458:141412. https://doi.org/10.1016/j.cej.2023.141412

  40. Pabjańczyk-Wlazło EK, Puszkarz AK, Bednarowicz A (2022) The influence of surface modification with biopolymers on the structure of melt-blown and spun-bonded poly(lactic acid) nonwovens. Materials 15(20):7097. https://doi.org/10.3390/ma15207097

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li L, Pei FF, Liu SP (2022) Preparation and characterization of polylactic acid nanofiber drug loaded medical dressings. J Text Res 43(11):1–8. https://doi.org/10.13475/j.fzxb.20210908508

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52003306), Major Projects of Science and Technology in Henan Province, China (221100310500), and Key Research Projects of Higher Education Institutions in Henan Province, China (23A540003), Graduate Research and Innovation Programs of Zhongyuan University of Technology (YKY2023ZK02), Sponsored by Program for Science & Technology Innovation Talents in Universities of Henan Province(24HASTIT011).

Funding

National Natural Science Foundation of China, 52003306, HENG ZHANG, Major Projects of Science and Technology in Henan Province, 221100310500, HENG ZHANG, Key Research Projects of Higher Education Institutions in Henan Province, 23A540003, HENG ZHANG, Graduate Research and Innovation Programs of Zhongyuan University of Technology, YKY2023ZK02, Qian Zhai, Sponsored by Program for Science & Technology Innovation Talents in Universities of Henan Province(24HASTIT011).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors.

Corresponding author

Correspondence to Heng Zhang.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Zhang, H., Zhai, Q. et al. Flexible polylactic acid/polyethylene glycol@erucamide microfibrous packaging with ordered fiber orientation. J Polym Res 31, 38 (2024). https://doi.org/10.1007/s10965-024-03888-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03888-7

Keywords

Navigation