Skip to main content

Advertisement

Log in

Effect of acidic environment on absorptive, morphological, mechanical, structural, and thermal properties of glass-carbon/epoxy-based hybrid composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This study experimentally investigated the effects of acidic environments on the absorptive, morphological, mechanical, structural, and thermal properties of glass-carbon/epoxy-based hybrid composites. For this purpose, hybrid composite specimens were conditioned by immersion in an acidic environment with pH 1.0 at -10, 25, and 40 °C for different periods (1 day, 1–3-6–9-12 weeks). A comparative study was conducted to evaluate the properties of dry and acid-immersed specimens and to examine failures due to the acidic environment and temperature. It has been observed that all properties of hybrid composites are significantly affected by acidic environmental conditions, and failure development is highly dependent on acidic ambient temperature and exposure time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gibson RF (2016) Principles of composite material mechanics. Boca Raton, Florida, United States

    Book  Google Scholar 

  2. Reddy JN (2003) Mechanics of laminated composite plates and shells. Boca Raton, Florida, United States

    Book  Google Scholar 

  3. Kaw AK (2005) Mechanics of composite materials, 2nd edn. CRC Press

    Book  Google Scholar 

  4. Nurazzi NM, Asyraf MRM, Fatimah Athiyah S et al (2021) A review on mechanical performance of hybrid natural fiber polymer composites for structural applications. Polymers (Basel) 13(13):2170

    Article  CAS  PubMed  Google Scholar 

  5. Nguyen H, Zatar W, Mutsuyoshi H (2017) Hybrid polymer composites for structural applications. Hybrid polymer composite materials: applications. Woodhead Publications, Cambridge, UK

    Google Scholar 

  6. Swolfs Y, Gorbatikh L, Verpoest I (2014) Fibre hybridisation in polymer composites: A review. Compos Part A Appl Sci Manuf 67:181–200

    Article  CAS  Google Scholar 

  7. Hayashi T (1972) On the improvement of mechanical properties of composites by hybrid composition. 8th international reinforced plastics conference. British Plastic Federation, Brighton

    Google Scholar 

  8. Bunsell AR, Harris B (1974) Hybrid carbon and glass fibre composites. Composites 5:157–164. https://doi.org/10.1016/0010-4361(74)90107-4

    Article  Google Scholar 

  9. Manders PW, Bader MG (1981) The strength of hybrid glass/carbon fibre composites - Part 1 Failure strain enhancement and failure mode. J Mater Sci 16:2233–2245. https://doi.org/10.1007/BF00542386

    Article  ADS  CAS  Google Scholar 

  10. Pimenta S, Pinho ST (2013) Hierarchical scaling law for the strength of composite fibre bundles. J Mech Phys Solids 61:1337–1356. https://doi.org/10.1016/j.jmps.2013.02.004

    Article  ADS  MathSciNet  Google Scholar 

  11. Swolfs Y, Gorbatikh L, Verpoest I (2013) Stress concentrations in hybrid unidirectional fibre-reinforced composites with random fibre packings. Compos Sci Technol 85:10–16. https://doi.org/10.1016/j.compscitech.2013.05.013

    Article  CAS  Google Scholar 

  12. Swolfs Y, Gorbatikh L, Romanov V et al (2013) Stress concentrations in an impregnated fibre bundle with random fibre packing. Compos Sci Technol 74:113–120. https://doi.org/10.1016/j.compscitech.2012.10.013

    Article  CAS  Google Scholar 

  13. Xing J, Hsiao GC, Chou TW (1981) A dynamic explanation of the hybrid effect. J Compos Mater 15:443–461. https://doi.org/10.1177/002199838101500504

    Article  Google Scholar 

  14. Ravishankar B, Nayak SK, Kader MA (2019) Hybrid composites for automotive applications – A review. J Reinf Plast Compos 38:835–845. https://doi.org/10.1177/0731684419849708

    Article  CAS  Google Scholar 

  15. Chauhan A, Kumar M, Kumar S (2021) Fabrication of polymer hybrid composites for automobile leaf spring application. Mater Today Proc 48(5):1371–1377

    Google Scholar 

  16. Kolpachkov ED, Kurnosov AO, Petrova AP, Raskutin AE (2020) Fiber-based hybrid polymer composites for aviation: a review. Vopr Materialoved 1:126–138. https://doi.org/10.22349/1994-6716-2020-101-1-126-138

    Article  CAS  Google Scholar 

  17. Raj K, Vasudevan A, Pugazhendhi L (2021) A review on different hybrid composites for aircraft structures. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.10.774

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gururaja MN, Rao ANH (2012) A review on recent applications and future prospectus of hybrid composites. Int J Soft Comput Eng 1(6):352–355

    Google Scholar 

  19. Jagadeesh P, Puttegowda M, Girijappa YGT et al (2022) Carbon fiber reinforced areca/sisal hybrid composites for railway interior applications: mechanical and morphological properties. Polym Compos 43:160–172. https://doi.org/10.1002/pc.26364

    Article  CAS  Google Scholar 

  20. Dinesh S, Elanchezhian C, Vijayaramnath B et al (2020) Experimental investigation of natural and synthetic hybrid composite for marine application. Mater Today Proc 22(3):322–329

    Article  CAS  Google Scholar 

  21. Fiore V, Di Bella G, Valenza A (2011) Glass-basalt/epoxy hybrid composites for marine applications. Mater Des 32:2091–2099. https://doi.org/10.1016/j.matdes.2010.11.043

    Article  CAS  Google Scholar 

  22. Swolfs Y (2017) Perspective for fibre-hybrid composites in wind energy applications. Materials (Basel) 10(11):1–17

    Article  Google Scholar 

  23. Reddy SSP, Suresh R, Hanamantraygouda MB, Shivakumar BP (2021) Use of composite materials and hybrid composites in wind turbine blades. Mater Today Proc 46(7):2827–2830

    Article  Google Scholar 

  24. Zhang J, Chaisombat K, He S, Wang CH (2012) Glass/carbon fibre hybrid composite laminates for structural applications in automotive vehicles. Sustainable automotive technologies. Springer, Berlin, Heidelberg

    Google Scholar 

  25. Bhagwat PM, Ramachandran M, Raichurkar P (2017) Mechanical properties of hybrid glass/carbon fiber reinforced epoxy composites. Mater Today Proc 4:7375–7380

    Article  CAS  Google Scholar 

  26. Jesthi DK, Nayak RK (2019) Improvement of mechanical properties of hybrid composites through interply rearrangement of glass and carbon woven fabrics for marine application. Compos Part B Eng 168:467–475. https://doi.org/10.1016/j.compositesb.2019.03.042

    Article  CAS  Google Scholar 

  27. Summerscales J (2019) Materials selection for marine composites. Marine composites. Elsevier Ltd, Amsterdam, Holland

    Google Scholar 

  28. Wahrhaftig A, Ribeiro H, Nogueira A (2019) A structural composite for marine boat constructions. Marine composites. Woodhead Publishing, Cambridge, UK

    Google Scholar 

  29. Metyx composites (2017) The world’s largest carbon hybrid composite catamaran. https://www.metyx.com/wp-content/uploads/PDF_Files/Marin_Brochure.pdf. Accessed 15 Jan 2024

  30. Summerscales J, Short D (1978) Carbon fibre and glass fibre hybrid reinforced plastics. Composites 9:157–166. https://doi.org/10.1016/0010-4361(78)90341-5

    Article  Google Scholar 

  31. Chandra DS, Reddy KVK, Hebbal O (2018) Fabrication and mechanical characterisation of glass and carbon fibre reinforced composite’s used for marine applications. Int J Eng Technol 7:228–232. https://doi.org/10.14419/ijet.v7i4.5.20052

    Article  CAS  Google Scholar 

  32. Mishnaevsky L, Branner K, Petersen HN et al (2017) Materials for wind turbine blades: an overview. Materials (Basel) 10(11):1–24

    Article  Google Scholar 

  33. Mishnaevsky L, Dai G (2014) Hybrid carbon/glass fiber composites: micromechanical analysis of structure-damage resistance relationships. Comput Mater Sci 81:630–640. https://doi.org/10.1016/j.commatsci.2013.08.024

    Article  CAS  Google Scholar 

  34. Raji M, Zari N, Bouhfid R, El Kacem Qaiss A (2018) Durability of composite materials during hydrothermal and environmental aging. Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, Cambridge, UK

    Google Scholar 

  35. Burns DA, Aherne J, Gay DA, Lehmann CMB (2016) Acid rain and its environmental effects: Recent scientific advances. Atmos Environ 146:1–4

    Article  ADS  CAS  Google Scholar 

  36. Sanliyuksel Yucel D, Balci N, Baba A (2016) Generation of acid mine lakes associated with abandoned coal mines in Northwest Turkey. Arch Environ Contam Toxicol 70:757. https://doi.org/10.1007/s00244-016-0270-z

    Article  CAS  PubMed  Google Scholar 

  37. Löhr AJ, Bogaard TA, Heikens A et al (2005) Natural pollution caused by the extremely acidic crater lake Kawah Ijen, East Java. Indonesia Environ Sci Pollut Res 12:89–95

    Article  Google Scholar 

  38. Qiu Q, Kumosa M (1997) Corrosion of E-glass fibers in acidic environments. Compos Sci Technol 57:497–507. https://doi.org/10.1016/S0266-3538(96)00158-3

    Article  CAS  Google Scholar 

  39. Xue Y, Veazie DR, Glinsey C et al (2007) Environmental effects on the mechanical and thermomechanical properties of aspen fiber-polypropylene composites. Compos Part B Eng 38:152–158. https://doi.org/10.1016/j.compositesb.2006.07.005

    Article  CAS  Google Scholar 

  40. Buck SE, Lischer DW, Nemat-Nasser S (2001) Mechanical and microstructural properties of notched E-glass/vinyl ester composite materials subjected to the environment and a sustained load. Mater Sci Eng A 317:128–134. https://doi.org/10.1016/S0921-5093(01)01170-4

    Article  Google Scholar 

  41. John K, Naidu SV (2007) Chemical resistance of sisal/glass reinforced unsaturated polyester hybrid composites. J Reinf Plast Compos 26:373–376. https://doi.org/10.1177/0731684406072524

    Article  CAS  Google Scholar 

  42. Singh P, Kaushik A, Kaur K (2005) Mechanical properties and swelling behavior of short glass fiber reinforced polyester composites. J Thermoplast Compos Mater 18:543–559. https://doi.org/10.1177/0892705705055444

    Article  CAS  Google Scholar 

  43. Amaro AM, Reis PNB, Neto MA, Louro C (2013) Effects of alkaline and acid solutions on glass/epoxy composites. Polym Degrad Stab 98:853–862. https://doi.org/10.1016/j.polymdegradstab.2012.12.029

    Article  CAS  Google Scholar 

  44. Pai R, Kamath MS, Rao RMVGK (1997) Acid resistance of glass fibre composites with different lay-up sequencing part II: degradation studies. J Reinf Plast Compos 16:1013–1019. https://doi.org/10.1177/073168449701601103

    Article  CAS  Google Scholar 

  45. Pai R, Kamath MS, Rao RMVGK (1997) Acid resistance of glass fibre composites with different lay-up sequencing: Part I-diffusion studies. J Reinf Plast Compos 16:1002–1012. https://doi.org/10.1177/073168449701601102

    Article  CAS  Google Scholar 

  46. Mahmoud MK, Tantawi SH (2003) Effect of strong acids on mechanical properties of glass/polyester GRP pipe at normal and high temperatures. Polym Plast Technol Eng 42:677–688. https://doi.org/10.1081/PPT-120023102

    Article  CAS  Google Scholar 

  47. Huntsman (2020) Advanced materials. https://www.huntsman.com/docs/Documents/20p_Resin_144699_Huntsman_Composites.pdf. Accessed 15 Jan 2024

  48. Li Y, Wang Y, Wang Y, Wang B (2019) Effects of simulated acid rain on soil respiration and its component in a mixed coniferous-broadleaved forest of the three gorges reservoir area in Southwest China. For Ecosyst 6:32. https://doi.org/10.1186/s40663-019-0192-0

    Article  Google Scholar 

  49. Weitsman YJ (2000) Effects of fluids on polymeric composites—a review. Compr Compos Mater 2:369–401

    Article  Google Scholar 

  50. Barjasteh E, Nutt SR (2012) Moisture absorption of unidirectional hybrid composites. Compos Part A Appl Sci Manuf 43:158–164. https://doi.org/10.1016/j.compositesa.2011.10.003

    Article  CAS  Google Scholar 

  51. Martin R (2008) Ageing of composites. Woodhead Publishing, Cambridge, UK

    Book  Google Scholar 

  52. Chauhan A, Bedi HS, Agnihotri PK (2022) Enhancing aging resistance of glass fiber/epoxy composites using carbon nanotubes. Mater Chem Phys 291:126740. https://doi.org/10.1016/j.matchemphys.2022.126740

    Article  CAS  Google Scholar 

  53. Osei Bonsu A, Liang W, Mensah C, Yang B (2022) Assessing the mechanical behavior of glass and basalt reinforced vinyl ester composite under artificial seawater environment. Structures 38:961–978. https://doi.org/10.1016/j.istruc.2022.02.053

    Article  Google Scholar 

  54. Li H, Zhang K, Fan X et al (2019) Effect of seawater ageing with different temperatures and concentrations on static/dynamic mechanical properties of carbon fiber reinforced polymer composites. Compos Part B Eng 173:106910. https://doi.org/10.1016/j.compositesb.2019.106910

    Article  CAS  Google Scholar 

  55. Schultheisz CR, Waas AM (1996) Compressive failure of composites, Part I: Testing and micromechanical theories. Prog Aerosp Sci 32(1):1–42

    Article  Google Scholar 

  56. Opelt CV, Cândido GM, Rezende MC (2018) Compressive failure of fiber reinforced polymer composites – A fractographic study of the compression failure modes. Mater Today Commun 15:218–227. https://doi.org/10.1016/j.mtcomm.2018.03.012

    Article  CAS  Google Scholar 

  57. Budiansky B, Fleck NA (1993) Compressive failure of fibre composites. J Mech Phys Solids 41:183–211. https://doi.org/10.1016/0022-5096(93)90068-Q

    Article  ADS  Google Scholar 

  58. Bonsu AO, Mensah C, Liang W et al (2022) Mechanical degradation and failure analysis of different glass/basalt hybrid composite configuration in simulated marine condition. Polymers (Basel) 14:3480. https://doi.org/10.3390/polym14173480

    Article  CAS  PubMed  Google Scholar 

  59. Dong C, Ranaweera-Jayawardena HA, Davies IJ (2012) Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres. Compos Part B Eng 43:573–581. https://doi.org/10.1016/j.compositesb.2011.09.001

    Article  CAS  Google Scholar 

  60. Hulugappa B, Achutha MV, Suresha B (2016) Effect of environmental conditions on flexural strength and fracture toughness of particulate filled glass-epoxy hybrid composites. Mater Sci Appl 7:710–729. https://doi.org/10.4236/msa.2016.711057

    Article  CAS  Google Scholar 

  61. Bonon AJ, Weck M, Bonfante EA, Coelho PG (2016) Physicochemical characterisation of three fiber-reinforced epoxide-based composites for dental applications. Mater Sci Eng C 69:905–913. https://doi.org/10.1016/j.msec.2016.07.002

    Article  CAS  Google Scholar 

  62. González MG, Cabanelas JC, Baselga J (2012) Applications of FTIR on epoxy resins - identification, monitoring the curing process, phase separation and water uptake. Infrared spectroscopy - materials science, engineering and technology. IntechOpen Ltd., London, UK

    Google Scholar 

  63. Örtengren U, Wellendorf H, Karlsson S, Ruyter IE (2001) Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. J Oral Rehabil 28:1106–1115. https://doi.org/10.1046/j.1365-2842.2001.00802.x

    Article  PubMed  Google Scholar 

  64. Maxwell a. S, Broughton WR, Dean G, Sims GD, (2005) Review of accelerated ageing methods and lifetime prediction technique for polymeric materials. Crown, Middlesex, UK

    Google Scholar 

  65. Amini M, Khavandi A (2019) Synergistic effects of mechanical and environmental loading in stress corrosion cracking of glass/polymer composites. J Compos Mater 53:3433–3444. https://doi.org/10.1177/0021998319842376

    Article  Google Scholar 

  66. Uthaman A, Xian G, Thomas S et al (2020) Durability of an epoxy resin and its carbon fiber-reinforced polymer composite upon immersion in water, acidic, and alkaline solutions. Polymers (Basel) 12:614. https://doi.org/10.3390/polym12030614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Akderya T, Özmen U, Baba BO (2020) Investigation of long-term ageing effect on the thermal properties of chicken feather fibre/poly(lactic acid) biocomposites. J Polym Res 27:162. https://doi.org/10.1007/s10965-020-02132-2

    Article  CAS  Google Scholar 

  68. Akderya T, Özmen U, Baba BO (2021) Revealing the long-term ageing effect on the mechanical properties of chicken feather fibre/poly(lactic acid) biocomposites. Fibers Polym 22:2602–2611. https://doi.org/10.1007/s12221-021-0304-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of The Scientific and Technological Research Council of Türkiye (TÜBİTAK) under Grant no. 120M158. All authors are truly grateful for the support.

Funding

The Scientific and Technological Research Council of Türkiye (TÜBİTAK),120M158,Buket Okutan Baba

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarkan Akderya.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 293 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akderya, T., Horzum, N. & Baba, B.O. Effect of acidic environment on absorptive, morphological, mechanical, structural, and thermal properties of glass-carbon/epoxy-based hybrid composites. J Polym Res 31, 27 (2024). https://doi.org/10.1007/s10965-023-03860-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03860-x

Keywords

Navigation