Skip to main content
Log in

Crystallization improvement of PLA by the talc with “grafting from” method of polymerization of lactide

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

As an inorganic filler, the fine particle talcum powder exhibits the poor compatibility when blended with polymers. By the “grafting from” method, a modified talcum powder (Talc-g-pla) was synthesized by the ring-opening polymerization (ROP) of lactide in bulk. The polymer chains grew in situ and chemically grafted on the talc surface, which was tightly connected even after washing with dichloromethane for 24 h. The Fourier transform infrared spectroscopy (FTIR), atomic force microscope (AFM), and the thermogravimetric analysis (TGA) of Talc-g-pla confirmed the successful modification of talc with PLA, which was about 2 wt%. Due to the good compatibility by the grafted PLA as a bridge between PLA and talc, the Talc-g-pla was well dispersed and served as an efficient nucleating agent of commercial PLA at low loadings. For the PLA/Talc-g-pla composite by the blend of Talc-g-pla with PLA in the proportions between 0.5–3.0 wt%, the differential scanning calorimeter (DSC) and polarized optical microscope (POM) showed that the improvement of thermodynamic properties and crystallization of PLA/Talc-g-pla composites were more obvious than those of the PLA/Talc physical composites. The DSC results suggested that the 1 wt% Talc-g-pla increased the crystallinity of PLA by over 3% than talc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. Rezvani Ghomi E, Khosravi F, Saedi Ardahaei A, Dai Y, Neisiany RE, Foroughi F, Wu M, Das O, Ramakrishna S (2021) The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material. Polymers (Basel) 13(11):1854

    Article  PubMed  Google Scholar 

  2. Araujo A, Botelho G, Oliveira M, Machado AV (2014) Influence of clay organic modifier on the thermal-stability of PLA based nanocomposites. Appl Clay Sci 88–89:144–150

    Article  Google Scholar 

  3. Armentano I, Bitinis N, Fortunati E, Mattioli S, Rescignano N, Verdejo R, Lopez-Manchado MA, Kenny JM (2013) Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog Polym Sci 38(10–11):1720–1747

    Article  CAS  Google Scholar 

  4. Nofar M, Sacligil D, Carreau PJ, Kamal MR, Heuzey MC (2019) Poly (lactic acid) blends: Processing, properties and applications. Int J Biol Macromol 125:307–360

    Article  CAS  PubMed  Google Scholar 

  5. Cheng C, Liao Z, Huang J, Huang S, Fan W (2017) Incorporation of supramolecular polymer-functionalized graphene: Towards the development of bio-based high electrically conductive polymeric nanocomposites. Compos Sci Technol 148:89–96

    Article  CAS  Google Scholar 

  6. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175

    Article  CAS  PubMed  Google Scholar 

  7. Saini P, Arora M, Kumar M (2016) Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv Rev 107:47–59

    Article  CAS  PubMed  Google Scholar 

  8. Chu W, Cheng C, Bastakoti BP, Kuo S (2016) Hierarchical mesoporous silicas templated by PE-b-PEO-b-PLA triblock copolymer for fluorescent drug delivery. RSC Adv 6(40):33811–33820

    Article  CAS  Google Scholar 

  9. Basu A, Nazarkovsky M, Ghadi R, Khan W, Domb AJ (2017) Poly(lactic acid)-based nanocomposites. Polym Adv Technol 28(8):919–930

    Article  CAS  Google Scholar 

  10. Lai WC, Liu LJ (2022) Enhanced crystallization of poly(lactic acid) bioplastics by a green and facile approach using liquid poly(ethylene glycol). Polym Adv Technol 33(12):4131–4141

    Article  CAS  Google Scholar 

  11. Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F (2018) Polylactic acid blends: The future of green, light and tough. Prog Polym Sci 85:83–127

    Article  CAS  Google Scholar 

  12. Zhang C, Zhai T, Turng L-S, Dan Y (2015) Morphological, mechanical, and crystallization behavior of polylactide/polycaprolactone blends compatibilized by l-lactide/caprolactone copolymer. Ind Eng Chem Res 54(38):9505–9511

    Article  CAS  Google Scholar 

  13. Zhao H, Cui Z, Sun X, Turng L-S, Peng X (2013) Morphology and properties of injection molded solid and microcellular polylactic acid/polyhydroxybutyrate-valerate (PLA/PHBV) blends. Ind Eng Chem Res 52(7):2569–2581

    Article  CAS  Google Scholar 

  14. Liu X, Wang T, Chow L C, Yang M, Mitchell J W (2014) Effects of inorganic fillers on the thermal and mechanical properties of poly(lactic acid). Int J Polym Sci

  15. Huda MS, Drzal LT, Misra M, Mohanty AK, Williams K, Mielewski DF (2005) A study on biocomposites from recycled newspaper fiber and poly(lactic acid). Ind Eng Chem Res 44(15):5593–5601

    Article  CAS  Google Scholar 

  16. Kaynak C, Erdogan AR (2016) Mechanical and thermal properties of polylactide/talc microcomposites: Before and after accelerated weathering. Polym Adv Technol 27(6):812–822

    Article  CAS  Google Scholar 

  17. Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255

    Article  CAS  Google Scholar 

  18. Choi WJ, Kim SC (2004) Effects of talc orientation and non-isothermal crystallization rate on crystal orientation of polypropylene in injection-molded polypropylene/ethylene-propylene rubber/talc blends. Polymer 45(7):2393–2401

    Article  CAS  Google Scholar 

  19. Ouchiar S, Stoclet G, Cabaret C, Georges E, Smith A, Martias C, Addad A, Gloaguen V (2015) Comparison of the influence of talc and kaolinite as inorganic fillers on morphology, structure and thermomechanical properties of polylactide based composites. Appl Clay Sci 116:231–240

    Article  Google Scholar 

  20. Li HB, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48(23):6855–6866

    Article  CAS  Google Scholar 

  21. Tabi T, Suplicz A, Czigany T, Kovacs JG (2014) Thermal and mechanical analysis of injection moulded poly(lactic acid) filled with poly(ethylene glycol) and talc. J Therm Anal Calorim 118(3):1419–1430

    Article  CAS  Google Scholar 

  22. Petchwattana N, Covavisaruch S, Petthai S (2014) Influence of talc particle size and content on crystallization behavior, mechanical properties and morphology of poly(lactic acid). Polym Bull (Berlin) 71(8):1947–1959

    Article  CAS  Google Scholar 

  23. Xin S, Li Y, Zhao H, Bian Y, Li W, Han C, Dong Q, Ning Z, Dong L (2015) Confinement crystallization of poly(L-lactide) induced by multiwalled carbon nanotubes and graphene nanosheets. J Therm Anal Calorim 122(1):379–391

    Article  CAS  Google Scholar 

  24. Xu P, Tian H, Han L, Yang H, Bian J, Pan H, Zhang H (2021) Improved heat resistance in poly (lactic acid)/ethylene butyl methacrylate glycidyl methacrylate terpolymer blends by controlling highly filled talc particles. J Therm Anal Calorim

  25. De Santis F, Pantani R (2015) Melt compounding of poly (lactic acid) and talc: Assessment of material behavior during processing and resulting crystallization. J Polym Res 22(12)

  26. Ke T, Sun X (2003) Melting behavior and crystallization kinetics of starch and poly(lactic acid) composites. J Appl Polym Sci 89(5):1203–1210

    Article  CAS  Google Scholar 

  27. Hong Y, Chen L, Song G, Bassir D, Cheng S, Shi X, Liu H, Tang G (2018) Effect of in situ reaction on thermal and mechanical properties of polylactide/talc composites. Polym Compos 39:E1618–E1625

    Article  CAS  Google Scholar 

  28. Jo MY, Ryu YJ, Ko JH, Yoon JS (2013) Hydrolysis and thermal degradation of poly(L-lactide) in the presence of talc and modified talc. J Appl Polym Sci 129(3):1019–1025

    Article  CAS  Google Scholar 

  29. Deetuam C, Samthong C, Choksriwichit S, Somwangthanaroj A (2020) Isothermal cold crystallization kinetics and properties of thermoformed poly(lactic acid) composites: Effects of talc, calcium carbonate, cassava starch and silane coupling agents. Iran Polym J 29(2):103–116

    Article  CAS  Google Scholar 

  30. Barletta M, Pizzi E, Puopolo M, Vesco S (2017) Design and manufacture of degradable polymers: Biocomposites of micro-lamellar talc and poly(lactic acid). Mater Chem Phys 196:62–74

    Article  CAS  Google Scholar 

  31. Carlmark A, Larsson E, Malmstrom E (2012) Grafting of cellulose by ring-opening polymerisation - a review. Eur Polym J 48(10):1646–1659

    Article  CAS  Google Scholar 

  32. Macchione MA, Biglione C, Strumia M (2018) Design, synthesis and architectures of hybrid nanomaterials for therapy and diagnosis applications. Polymers (Basel) 10(5):527

    Article  PubMed  Google Scholar 

  33. Wu L, Glebe U, Boker A (2015) Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym Chem 6(29):5143–5184

    Article  CAS  Google Scholar 

  34. Nordgren N, Lonnberg H, Hult A, Malmstrom E, Rutland MW (2009) Adhesion dynamics for cellulose nanocomposites. ACS Appl Mater Interfaces 1(10):2098–2103

    Article  CAS  PubMed  Google Scholar 

  35. Luan Y, Wu J, Zhan M, Zhang J, Zhang J, He J (2013) “One pot” homogeneous synthesis of thermoplastic cellulose acetate-graft-poly(L-lactide) copolymers from unmodified cellulose. Cellulose 20(1):327–337

    Article  CAS  Google Scholar 

  36. Jiang Y, Zhang Y, Cao M, Li J, Wu M, Zhang H, Zheng S, Liu H, Yang M (2021) Combining 'grafting to' and 'grafting from' to synthesize comb-like NCC-g-PLA as a macromolecular modifying agent of PLA. Nanotechnology 32(38):385601

  37. Michot LJ, Villieras F, Francois M, Yvon J, Le Dred R, Cases JM (1994) The structural microscopic hydrophilicity of talc. Langmuir 10(10):3765–3773

    Article  CAS  Google Scholar 

  38. Li H, Wang J, Wu L, Liu W, Cheng R, Liu B (2019) Ring-opening polymerization of lactide by bifunctional organocatalyst at ambient conditions. Acta Polym Sin 50(12):1290–1297

    CAS  Google Scholar 

  39. Wu L, Liu W, Ye J, Cheng R (2020) Fast cyclotrimerization of a wide range of isocyanates to isocyanurates over acid/base conjugates under bulk conditions. Catal Commun 145:106097

    Article  CAS  Google Scholar 

  40. Feng Z, Wu L, Dong H, Liu B, Cheng R (2021) Copolyesters of epsilon-caprolactone and l-lactide catalyzed by a tetrabutylammonium phthalimide-N-oxyl organocatalyst. RSC Adv 11(31):19021–19028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Du C, Yuan H, Zhu X, Zhang T, Liu Z, Wang C (2023) Fabrication of antibacterial zr-bmg biomimetic surfaces by femtosecond laser. Surf Interfaces 37:102740

    Article  CAS  Google Scholar 

  42. Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M, Campagne C, Devaux E, Dubois P (2011) High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromol 12(5):1762–1771

    Article  CAS  Google Scholar 

  43. Su Z, Li Q, Liu Y, Hu G, Wu C (2009) Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane). Eur Polym J 45(8):2428–2433

    Article  CAS  Google Scholar 

  44. Battegazzore D, Bocchini S, Frache A (2011) Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym Lett 5(10):849–858

    Article  CAS  Google Scholar 

  45. Rotenberg B, Patel AJ, Chandler D (2011) Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic. J Am Chem Soc 133(50):20521–20527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cuba-Chiem LT, Huynh L, Ralston J, Beattie DA (2008) In situ particle film atr ftir spectroscopy of carboxymethyl cellulose adsorption on talc: Binding mechanism, ph effects, and adsorption kinetics. Langmuir 24(15):8036–8044

    Article  CAS  PubMed  Google Scholar 

  47. Bahrani A, Naderi R, Mahdavian M (2018) Chemical modification of talc with corrosion inhibitors to enhance the corrosion protective properties of epoxy-ester coating. Prog Org Coat 120:110–122

    Article  CAS  Google Scholar 

  48. Monika KV (2019) Non-isothermal degradation kinetics of PLA-functionalized gum (fg) biocomposite with dicumyl peroxide (dcp). J Therm Anal Calorim 138(1):195–210

    Article  CAS  Google Scholar 

  49. Li C, Gong W, Cao Q, Yao Z, Meng X, Xin Z (2022) Enhancement of cardanol-loaded halloysite for the thermo-oxidative stability and crystallization property of polylactic acid. Appl Clay Sci 216:106357

    Article  CAS  Google Scholar 

  50. Fowlks AC, Narayan R (2010) The effect of maleated polylactic acid (PLA) as an interfacial modifier in PLA-talc composites. J Appl Polym Sci 118(5):2810–2820

    Article  CAS  Google Scholar 

  51. Pivsa-Art W, Pivsa-Art S (2019) Effect of talc on mechanical characteristics and fracture toughness of poly(lactic acid)/poly(butylene succinate) blend. J Polym Environ 27(8):1821–1827

    Article  CAS  Google Scholar 

  52. Nascimento L, Gamez-Perez J, Santana OO, Velasco JI, Maspoch ML, Franco-Urquiza E (2010) Effect of the recycling and annealing on the mechanical and fracture properties of poly(lactic acid). J Polym Environ 18(4):654–660

    Article  CAS  Google Scholar 

  53. Jain S, Misra M, Mohanty AK, Ghosh AK (2012) Thermal, mechanical and rheological behavior of poly(lactic acid)/talc composites. J Polym Environ 20(4):1027–1037

    Article  CAS  Google Scholar 

  54. Ouchiar S, Stoclet G, Cabaret C, Gloaguen V (2016) Influence of the filler nature on the crystalline structure of polylactide-based nanocomposites: New insights into the nucleating effect. Macromolecules 49(7):2782–2790

    Article  CAS  Google Scholar 

  55. Pan P, Kai W, Zhu B, Dong T, Inoue Y (2007) Polymorphous crystallization and multiple melting behavior of poly(L-lactide): Molecular weight dependence. Macromolecules 40(19):6898–6905

    Article  CAS  Google Scholar 

  56. Nofar M, Zhu W, Park CB, Randall J (2011) Crystallization kinetics of linear and long-chain-branched polylactide. Ind Eng Chem Res 50(24):13789–13798

    Article  CAS  Google Scholar 

  57. Liao R, Yang B, Yu W, Zhou C (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104(1):310–317

    Article  CAS  Google Scholar 

  58. Cho JD, Baratian S, Kim J, Yeh FJ, Hsiao BS, Runt J (2003) Crystallization and structure formation of poly(L-lactide-co-meso-lactide) random copolymers: A time-resolved wide- and small-angle x-ray scattering study. Polymer 44(3):711–717

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Meng or Ruihua Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 856 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Sun, M., Meng, X. et al. Crystallization improvement of PLA by the talc with “grafting from” method of polymerization of lactide. J Polym Res 31, 20 (2024). https://doi.org/10.1007/s10965-023-03857-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03857-6

Keywords

Navigation