Skip to main content
Log in

Ultrasound assisted synthesis of polymer nanocomposites: a review

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The potential of ultrasonication as a technique to enhance the production of polymer nanocomposites is examined in this review paper. Polymer nanocomposites have been widely employed in recent years because of their remarkable mechanical, electrical, and optical properties. The article focuses on the application of several synthesis techniques, including solvent casting, 3D printing, electrospinning, and template synthesis. It has been established that uniformly dispersing nanoparticles inside the polymer matrix during ultrasonication can greatly improve the quality of nanocomposites. Recent research has shown that nanocomposites made using ultrasonication have improved mechanical and thermal stability. However, scaling up these techniques remains a challenge and requires further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sundarram S, Kim YH, Li W (2015) Preparation and characterization of poly(ether imide) nanocomposites and nanocomposite foams. Manuf Nanocompos Eng Plast Elsevier 61–85.https://doi.org/10.1016/B978-1-78242-308-9.00004-5

  2. Jiménez A, Vargas M, Chiralt A (2016) Antimicrobial nanocomposites for food packaging applications: novel approaches. Novel Approach Nanotechnol Food 347–386. https://doi.org/10.1016/B978-0-12-804308-0.00011-X

  3. Kumar K, Ghosh PK, Kumar A (2016) Improving mechanical and thermal properties of TiO2-epoxy nanocomposite. Compos B Eng 97:353–360. https://doi.org/10.1016/J.COMPOSITESB.2016.04.080

    Article  CAS  Google Scholar 

  4. Sanchez C, Lebeau B, Chaput F, Boilot J-P (2003) Optical Properties of Functional Hybrid Organic-Inorganic Nanocomposites. Adv Mater 15(23):1969–1994. https://doi.org/10.1002/adma.200300389

    Article  CAS  Google Scholar 

  5. Njuguna J, Pielichowski K (2003) Polymer Nanocomposites for Aerospace Applications: Properties. Adv Eng Mater 5(11):769–778. https://doi.org/10.1002/adem.200310101

    Article  CAS  Google Scholar 

  6. Mosmeri H, Tasharrofi S, Alaie E, Hassani SS (2018) Controlled-release oxygen nanocomposite for bioremediation of benzene contaminated groundwater. New Polym Nanocompos Environ Remed 601–622. https://doi.org/10.1016/B978-0-12-811033-1.00023-8

  7. Ji L, Meduri P, Agubra V, Xiao X, Alcoutlabi M (2016) Graphene-Based Nanocomposites for Energy Storage. Adv Energy Mater 6(16):1502159. https://doi.org/10.1002/aenm.201502159

    Article  CAS  Google Scholar 

  8. Haghighi H, Licciardello F, Fava P, Siesler HW, Pulvirenti A (2020) Recent advances on chitosan-based films for sustainable food packaging applications. Food Packag Shelf Life 26

  9. Holder E, Tessler N, Rogach AL (2008) Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices. J Mater Chem 18(10):1064. https://doi.org/10.1039/b712176h

    Article  CAS  Google Scholar 

  10. Feldman D (2016) Polymer nanocomposites in medicine. J Macromol Sci Part A 53(1):55–62. https://doi.org/10.1080/10601325.2016.1110459

    Article  CAS  Google Scholar 

  11. Rhim J-W, Ng PKW (2007) Natural Biopolymer-Based Nanocomposite Films for Packaging Applications. Crit Rev Food Sci Nutr 47(4):411–433. https://doi.org/10.1080/10408390600846366

    Article  CAS  PubMed  Google Scholar 

  12. Di Y, Iannace S, di Maio E, Nicolais L (2003) Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Polym Sci B Polym Phys 41(7):670–678. https://doi.org/10.1002/polb.10420

    Article  CAS  Google Scholar 

  13. Liu X, Wu Q (2001) PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer (Guildf) 42(25):10013–10019. https://doi.org/10.1016/S0032-3861(01)00561-4

    Article  CAS  Google Scholar 

  14. Bhanvase BA, Sonawane SH (2014) Ultrasound assisted in situ emulsion polymerization for polymer nanocomposite: A review. Chem Eng Proc Proc Intensific 85:86–107. https://doi.org/10.1016/j.cep.2014.08.007

  15. Pomogailo AD (2005) Polymer Sol-Gel Synthesis of Hybrid Nanocomposites. Colloid J 67(6):658–677. https://doi.org/10.1007/s10595-005-0148-7

    Article  CAS  Google Scholar 

  16. Amiri S, Rahimi A (2016) Hybrid nanocomposite coating by sol–gel method: a review. Iranian Polym J 25(6):559–577. https://doi.org/10.1007/s13726-016-0440-x

    Article  CAS  Google Scholar 

  17. Chandra A, Turng L-S, Gopalan P, Rowell RM, Gong S (2008) Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Compos Sci Technol 68(3–4):768–776. https://doi.org/10.1016/j.compscitech.2007.08.027

    Article  CAS  Google Scholar 

  18. Philip MA, Natarajan U, Nagarajan R (2014) Acoustically-enhanced particle dispersion in polystyrene/alumina nanocomposites. Adv Nano Res 2(2):121–133. https://doi.org/10.12989/anr.2014.2.2.121

    Article  Google Scholar 

  19. Pinjari DV, Pandit AB (2010) Cavitation milling of natural cellulose to nanofibrils. Ultrason Sonochem 17(5):845–852. https://doi.org/10.1016/J.ULTSONCH.2010.03.005

    Article  CAS  PubMed  Google Scholar 

  20. Price GJ, Nawaz M, Yasin T, Bibi S (2018) Sonochemical modification of carbon nanotubes for enhanced nanocomposite performance. Ultrason Sonochem 40:123–130. https://doi.org/10.1016/J.ULTSONCH.2017.02.021

    Article  CAS  PubMed  Google Scholar 

  21. Badnore AU, Pandit AB (2015) Synthesis of nanosized calcium carbonate using reverse miniemulsion technique: Comparison between sonochemical and conventional method. Chem Eng Proc Proc Intensific 98:13–21. https://doi.org/10.1016/J.CEP.2015.10.003

    Article  CAS  Google Scholar 

  22. Rennhofer H, Zanghellini B (2021) Dispersion State and Damage of Carbon Nanotubes and Carbon Nanofibers by Ultrasonic Dispersion: A Review. Nanomaterials 11(6):1469. https://doi.org/10.3390/nano11061469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pollet BG, Ashokkumar M (2019) Introduction to Ultrasound, Sonochemistry and Sonoelectrochemistry. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-25862-7

  24. Agarwal US, Nisal A, Joseph R (2007) PET-SWNT nanocomposites through ultrasound assisted dissolution-evaporation.Eur Polym J 43(6):2279–2285. https://doi.org/10.1016/j.eurpolymj.2007.03.020

  25. Raso J, Mañas P, Pagán R, Sala FJ (1999) Influence of different factors on the output power transferred into medium by ultrasound. Ultrason Sonochem 5(4):157–162. https://doi.org/10.1016/S1350-4177(98)00042-X

    Article  CAS  PubMed  Google Scholar 

  26. Huang J, Yang Z, Yang B, Wang R, Wang T (2014) Ultrasound assisted polymerization for synthesis of ZnO/Polypyrrole composites for zinc/nickel rechargeable battery. J Power Sour 271:143–151. https://doi.org/10.1016/j.jpowsour.2014.07.140

    Article  CAS  Google Scholar 

  27. Lahelin M, Annala M, Nykänen A, Ruokolainen J, Seppälä J (2011) In situ polymerized nanocomposites: Polystyrene/CNT and Poly(methyl methacrylate)/CNT composites. Compos Sci Technol 71(6):900–907. https://doi.org/10.1016/j.compscitech.2011.02.005

    Article  CAS  Google Scholar 

  28. Santos HM, Lodeiro C, Capelo-Martinez JL (2009) The Power of Ultrasound. In Ultrasound in Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 1–16. https://doi.org/10.1002/9783527623501.ch1

  29. Santos H, Capelo J (2007) Trends in ultrasonic-based equipment for analytical sample treatment. Talanta 73(5):795–802. https://doi.org/10.1016/j.talanta.2007.05.039

    Article  CAS  PubMed  Google Scholar 

  30. Frømyr TR, Hansen FK, Olsen T (2012) The Optimum Dispersion of Carbon Nanotubes for Epoxy Nanocomposites: Evolution of the Particle Size Distribution by Ultrasonic Treatment. J Nanotechnol 2012:1–14. https://doi.org/10.1155/2012/545930

    Article  CAS  Google Scholar 

  31. Ávila-Orta CA et al (2019) ‘Ultrasound-Assisted Melt Extrusion of Polymer Nanocomposites’, in Nanocomposites - Recent Evolutions IntechOpen. https://doi.org/10.5772/intechopen.80216

    Article  Google Scholar 

  32. Rane AV, Kanny K, Abitha VK, Thomas S (2018) Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In Synthesis of Inorganic Nanomaterials, Elsevier, pp. 121–139. https://doi.org/10.1016/B978-0-08-101975-7.00005-1

  33. Adnan M, Dalod A, Balci M, Glaum J, Einarsrud M-A (2018) In Situ Synthesis of Hybrid Inorganic-Polymer Nanocomposites. Polymers (Basel) 10(10):1129. https://doi.org/10.3390/polym10101129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo Q et al (2014) Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Polymers (Basel) 6(7):2037–2050. https://doi.org/10.3390/polym6072037

    Article  CAS  Google Scholar 

  35. Cao Y, Zheng Y, Pan G (2008) Radical generation process studies of the cationic surfactants in ultrasonically irradiated emulsion polymerization. Ultrason Sonochem 15(4):320–325. https://doi.org/10.1016/j.ultsonch.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  36. Bhanvase BA, Pinjari DV, Gogate PR, Sonawane SH, Pandit AB (2012) Synthesis of exfoliated poly(styrene-co-methyl methacrylate)/montmorillonite nanocomposite using ultrasound assisted in situ emulsion copolymerization. Chem Eng J 181–182:770–778. https://doi.org/10.1016/j.cej.2011.11.084

    Article  CAS  Google Scholar 

  37. Dhatarwal P, Sengwa RJ (2021) Superior optical and dielectric properties of ultrasonic-assisted solution-cast prepared PMMA/MMT nanocomposite films. Funct Compos Struct 3(2)

  38. Cherifi Z et al (2023) Ultrasound-promoted preparation of cellulose acetate/organophilic clay bio-nanocomposites films by solvent casting method. Polym Bull 80(2):1831–1843. https://doi.org/10.1007/s00289-022-04129-x

    Article  CAS  Google Scholar 

  39. Dinari M, Mallakpour S (2014) Ultrasound-assisted one-pot preparation of organo-modified nano-sized layered double hydroxide and its nanocomposites with polyvinylpyrrolidone. J Polym Res 21(2):350. https://doi.org/10.1007/s10965-013-0350-y

    Article  CAS  Google Scholar 

  40. Mallakpour S, Dinari M (2013) Enhancement in thermal properties of poly(vinyl alcohol) nanocomposites reinforced with Al 2 O 3 nanoparticles. J Reinf Plast Compos 32(4):217–224. https://doi.org/10.1177/0731684412467236

    Article  CAS  Google Scholar 

  41. Soltani R, Dinari M, Mohammadnezhad G (2018) Ultrasonic-assisted synthesis of novel nanocomposite of poly(vinyl alcohol) and amino-modified MCM-41: A green adsorbent for Cd(II) removal. Ultrason Sonochem 40:533–542. https://doi.org/10.1016/j.ultsonch.2017.07.045

    Article  CAS  PubMed  Google Scholar 

  42. Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. J Appl Polym Sci 84(14):2660–2669. https://doi.org/10.1002/app.10436

    Article  CAS  Google Scholar 

  43. Sengwa RJ, Choudhary S (2014) Dielectric properties and fluctuating relaxation processes of poly(methyl methacrylate) based polymeric nanocomposite electrolytes. J Phys Chem Solids 75(6):765–774. https://doi.org/10.1016/j.jpcs.2014.02.008

    Article  CAS  Google Scholar 

  44. Buruga K, Kalathi JT, Kim K-H, Ok YS, Danil B (2018) Polystyrene-halloysite nano tube membranes for water purification. J Ind Eng Chem 61:169–180. https://doi.org/10.1016/j.jiec.2017.12.014

    Article  CAS  Google Scholar 

  45. Peng B et al (2011) Effects of ultrasound on the morphology and properties of propylene-based plastomer/nanosilica composites. Polym J 43(1):91–96. https://doi.org/10.1038/pj.2010.95

    Article  CAS  Google Scholar 

  46. Chen Y, Li H (2007) Mechanism for effect of ultrasound on polymer melt in extrusion. J Polym Sci B Polym Phys 45(10):1226–1233. https://doi.org/10.1002/polb.21132

    Article  CAS  Google Scholar 

  47. Isayev AI, Kumar R, Lewis TM (2009) Ultrasound assisted twin screw extrusion of polymer–nanocomposites containing carbon nanotubes. Polymer (Guildf) 50(1):250–260. https://doi.org/10.1016/j.polymer.2008.10.052

    Article  CAS  Google Scholar 

  48. Mata-Padilla JM et al (2015) Structural and morphological studies on the deformation behavior of polypropylene/multi-walled carbon nanotubes nanocomposites prepared through ultrasound-assisted melt extrusion process. J Polym Sci B Polym Phys 53(7):475–491. https://doi.org/10.1002/polb.23655

    Article  CAS  Google Scholar 

  49. Kim KY, Ju DU, Nam GJ, Lee JW (2007) Ultrasonic Effects on PP/PS/Clay Nanocomposites during Continuous Melt Compounding Process. Macromol Symp 249–250(1):283–288. https://doi.org/10.1002/masy.200750346

    Article  CAS  Google Scholar 

  50. Andrade-Guel M et al (2021) Non-Woven Fabrics Based on Nanocomposite Nylon 6/ZnO Obtained by Ultrasound-Assisted Extrusion for Improved Antimicrobial and Adsorption Methylene Blue Dye Properties. Polymers (Basel) 13(11):1888. https://doi.org/10.3390/polym13111888

    Article  CAS  PubMed  Google Scholar 

  51. Swain SK, Isayev AI (2007) Effect of ultrasound on HDPE/clay nanocomposites: Rheology, structure and properties. Polymer (Guildf) 48(1):281–289. https://doi.org/10.1016/j.polymer.2006.11.002

    Article  CAS  Google Scholar 

  52. Pérez-Medina J et al (2016) Metamaterial Behavior of Polymer Nanocomposites Based on Polypropylene/Multi-Walled Carbon Nanotubes Fabricated by Means of Ultrasound-Assisted Extrusion. Materials 9(11):923. https://doi.org/10.3390/ma9110923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang J et al (2021) Preparation of flexible and elastic thermal conductive nanocomposites via ultrasonic-assisted forced infiltration. Compos Sci Technol 202. https://doi.org/10.1016/j.compscitech.2020.108582

    Article  CAS  Google Scholar 

  54. Li C et al (2022) Ultrasonic-Assisted Method for the Preparation of Carbon Nanotube-Graphene/Polydimethylsiloxane Composites with Integrated Thermal Conductivity Electromagnetic Interference Shielding, and Mechanical Performances. Int J Mol Sci 23(23):15007. https://doi.org/10.3390/ijms232315007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao Y et al (2018) Ultrasonic processing of MWCNT nanopaper reinforced polymeric nanocomposites. Polymer (Guildf) 156:85–94. https://doi.org/10.1016/j.polymer.2018.09.053

    Article  CAS  Google Scholar 

  56. Asif S, Chansoria P, Shirwaiker R (2020) Ultrasound-assisted vat photopolymerization 3D printing of preferentially organized carbon fiber reinforced polymer composites. J Manuf Process 56:1340–1343. https://doi.org/10.1016/j.jmapro.2020.04.029

    Article  Google Scholar 

  57. Huang Y, Leu MC, Mazumder J, Donmez A (2015) Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations.J Manuf Sci Eng 137(1). https://doi.org/10.1115/1.4028725

  58. Chockalingam K, Jawahar N, Chandrasekhar U (2006) Influence of layer thickness on mechanical properties in stereolithography. Rapid Prototyp J 12(2):106–113. https://doi.org/10.1108/13552540610652456

    Article  Google Scholar 

  59. Chockalingam K, Jawahar N, Ramanathan KN, Banerjee PS (2006) Optimization of stereolithography process parameters for part strength using design of experiments. Int J Adv Manuf Technol 29(1–2):79–88. https://doi.org/10.1007/s00170-004-2307-0

    Article  Google Scholar 

  60. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev 119(8):5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mandzy N, Grulke E, Druffel T (2005) Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Technol 160(2):121–126. https://doi.org/10.1016/j.powtec.2005.08.020

    Article  CAS  Google Scholar 

  62. Wong CW et al (2020) Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol-Gel Method for Outstanding Antimicrobial and Antibiofilm Activities. J Clust Sci 31(2):367–389. https://doi.org/10.1007/s10876-019-01651-3

    Article  CAS  Google Scholar 

  63. Srivatsan TS, Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Processing techniques for particulate-reinforced metal aluminium matrix composites. J Mater Sci 26(22):5965–5978. https://doi.org/10.1007/BF01113872

    Article  CAS  Google Scholar 

  64. Zhu L et al (2022) PVP/Highly Dispersed AgNPs Nanofibers Using Ultrasonic-Assisted Electrospinning. Polymers (Basel) 14(3):599. https://doi.org/10.3390/polym14030599

    Article  CAS  PubMed  Google Scholar 

  65. Dong Q et al (2013) Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors. J Power Sources 243:350–353. https://doi.org/10.1016/j.jpowsour.2013.06.060

    Article  CAS  Google Scholar 

  66. Hulsey S, Absar S, Choi H (2018) Investigation of simultaneous ultrasonic processing of polymer-nanoparticle solutions for electrospinning of nanocomposite nanofibers. J Manuf Process 34:776–784. https://doi.org/10.1016/j.jmapro.2018.03.050

    Article  Google Scholar 

  67. Mulky E, Yazgan G, Maniura-Weber K, Luginbuehl R, Fortunato G, Bühlmann-Popa A-M (2014) Fabrication of biopolymer-based staple electrospun fibres for nanocomposite applications by particle-assisted low temperature ultrasonication. Mater Sci Eng C 45:277–286. https://doi.org/10.1016/j.msec.2014.09.009

    Article  CAS  Google Scholar 

  68. Nonato RC, Mei LHI, Bonse BC, Chinaglia EF, Morales AR (2019) Nanocomposites of PLA containing ZnO nanofibers made by solvent cast 3D printing: Production and characterization. Eur Polym J 114:271–278. https://doi.org/10.1016/j.eurpolymj.2019.02.026

    Article  CAS  Google Scholar 

  69. Kharissova OV, Torres-Martínez LM, Kharisov BI, editors (2021) Handbook of nanomaterials and nanocomposites for energy and environmental applications. Springer International Publishing. https://doi.org/10.1007/978-3-030-36268-3

  70. Lu KL, Lago RM, Chen YK, Green MLH, Harris PJF, Tsang SC (1996) Mechanical damage of carbon nanotubes by ultrasound. Carbon N Y 34(6):814–816. https://doi.org/10.1016/0008-6223(96)89470-X

    Article  CAS  Google Scholar 

  71. Englert M, Bittmann B, Haupert F, Schlarb AK (2012) Scaling-up of the dispersion process of nanoparticle-agglomerates in epoxy resin with an innovative continuous ultrasonic flow-through-cell dispersion system. Polym Eng Sci 52(1):102–107. https://doi.org/10.1002/pen.22051

    Article  CAS  Google Scholar 

  72. Hu C et al (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C Mater 5(9):2318–2328. https://doi.org/10.1039/C6TC05261D

    Article  CAS  Google Scholar 

  73. Postiglione G, Natale G, Griffini G, Levi M, Turri S (2015) Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling. Compos Part A Appl Sci Manuf 76:110–114. https://doi.org/10.1016/j.compositesa.2015.05.014

    Article  CAS  Google Scholar 

  74. Zhou YX, Wu PX, Cheng Z-Y, Ingram J, Jeelani S (2008) Improvement in electrical, thermal and mechanical properties of epoxy by filling carbon nanotube. Express Polym Lett 2(1):40–48. https://doi.org/10.3144/expresspolymlett.2008.6

    Article  CAS  Google Scholar 

  75. Rezazadeh V, Pourhossaini MR, Salimi A (2017) Effect of amine-functionalized dispersant on cure and electrical properties of carbon nanotube/epoxy nanocomposites. Prog Org Coat 111:389–394. https://doi.org/10.1016/j.porgcoat.2017.06.017

    Article  CAS  Google Scholar 

  76. Yang Y, Gupta MC, Zalameda JN, Winfree WP (2008) Dispersion behaviour, thermal and electrical conductivities of carbon nanotube-polystyrene nanocomposites. Micro Nano Lett 3(2):35. https://doi.org/10.1049/mnl:20070073

    Article  CAS  Google Scholar 

  77. Pradhan AK, Swain SK (2012) Oxygen Barrier of Multiwalled Carbon Nanotube/Polymethyl Methacrylate Nanocomposites Prepared by in situ Method. J Mater Sci Technol 28(5):391–395. https://doi.org/10.1016/S1005-0302(12)60073-5

    Article  CAS  Google Scholar 

  78. Abbasian M, Khayyatalimohammadi M (2023) Ultrasound-assisted synthesis of MIL-88(Fe) conjugated starch-Fe3O4 nanocomposite: A safe antibacterial carrier for controlled release of tetracycline. Int J Biol Macromol 123665. https://doi.org/10.1016/j.ijbiomac.2023.123665

  79. Taka ZI, Mustafa MK, Sekak KA, Asman S (2019) Ultrasonic Assisted Preparation and Characterization of Conductive Polyaniline-Modified Magnetite Nanocomposites (PAni/Fe3O4 Nanocomposites)

  80. Sharif A, Mustaqeem M, Saleh TA, ur Rehman A, Ahmad M, Warsi MF (2022) Synthesis, structural and dielectric properties of Mg/Zn ferrites -PVA nanocomposites. Mater Sci Eng B280:115689. https://doi.org/10.1016/j.mseb.2022.115689.

  81. Ballarin B et al (2019) PANI/Au/Fe3O4 nanocomposite materials for high performance energy storage. Electrochim Acta 322. https://doi.org/10.1016/j.electacta.2019.134707

    Article  CAS  Google Scholar 

  82. Rotaru R et al (2018) Ferromagnetic iron oxide–cellulose nanocomposites prepared by ultrasonication. Polym Chem 9(7):860–868. https://doi.org/10.1039/C7PY01587A

    Article  CAS  Google Scholar 

  83. Saravanan A, Ramasamy RP (2016) Chitosan-maghemite-LiClO4 – a new green conducting superpara magnetic nanocomposite. J Polym Res 23(9):174. https://doi.org/10.1007/s10965-016-1072-8

    Article  CAS  Google Scholar 

  84. Seo WJ et al (2006) Effects of ultrasound on the synthesis and properties of polyurethane foam/clay nanocomposites. J Appl Polym Sci 102(4):3764–3773. https://doi.org/10.1002/app.24735

    Article  CAS  Google Scholar 

  85. Hyun YH, Lim ST, Choi HJ, Jhon MS (2001) Rheology of Poly(ethylene oxide)/Organoclay Nanocomposites. Macromolecules 34(23):8084–8093. https://doi.org/10.1021/ma002191w

    Article  CAS  Google Scholar 

  86. Lim SK, Kim JW, Chin I-J, Choi HJ (2002) Rheological properties of a new rubbery nanocomposite: Polyepichlorohydrin/organoclay nanocomposites. J Appl Polym Sci 86(14):3735–3739. https://doi.org/10.1002/app.11451

    Article  CAS  Google Scholar 

  87. Li J, Zhao L, Guo S (2005) Ultrasonic Preparation of Polymer/Layered Silicate Nanocomposites during Extrusion. Polym Bull 55(3):217–223. https://doi.org/10.1007/s00289-005-0424-z

    Article  CAS  Google Scholar 

  88. Boro U, Kashyap N, Moholkar VS (2022) Sonochemical Synthesis of Poly(lactic acid) Nanocomposites with ZnO Nanoflowers: Effect of Nanofiller Morphology on Physical Properties. ACS Engineering Au 2(1):46–60. https://doi.org/10.1021/acsengineeringau.1c00018

    Article  CAS  Google Scholar 

  89. Orasugh JT et al (2018) Jute cellulose nano-fibrils/hydroxypropylmethylcellulose nanocomposite: A novel material with potential for application in packaging and transdermal drug delivery system. Ind Crops Prod 112:633–643. https://doi.org/10.1016/j.indcrop.2017.12.069

    Article  CAS  Google Scholar 

  90. Torgbo S, Sukyai P (2019) Fabrication of microporous bacterial cellulose embedded with magnetite and hydroxyapatite nanocomposite scaffold for bone tissue engineering. Mater Chem Phys 237. https://doi.org/10.1016/j.matchemphys.2019.121868

    Article  CAS  Google Scholar 

  91. Abbasi AR, Morsali A (2010) Synthesis and Characterization of AgBr–Silk Nanocomposite Under Ultrasound Irradiation. J Inorg Organomet Polym Mater 20(4):825–832. https://doi.org/10.1007/s10904-010-9408-z

    Article  CAS  Google Scholar 

  92. Sharififard H, Shahraki ZH, Rezvanpanah E, Rad SH (2018) A novel natural chitosan/activated carbon/iron bio-nanocomposite: Sonochemical synthesis, characterization, and application for cadmium removal in batch and continuous adsorption process. Bioresour Technol 270:562–569. https://doi.org/10.1016/j.biortech.2018.09.094

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesh Kumar Poddar.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest and have not received any external funding for this research. We gratefully acknowledge the Department of Chemical Engineering, National Institute of Technology, Karnataka for providing the necessary facilities.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soman, V., Vishwakarma, K. & Poddar, M.K. Ultrasound assisted synthesis of polymer nanocomposites: a review. J Polym Res 30, 406 (2023). https://doi.org/10.1007/s10965-023-03786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03786-4

Keywords

Navigation