Skip to main content
Log in

Methods of determining the degree of crystallinity of polymers with X-ray diffraction: a review

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the methods developed to determine the degree of crystallinity of polymers by X-ray diffraction (XRD) until the date which this study was done were investigated in chronological order. With this study, the concept of degree of crystallinity has been proposed instead of many concepts used to express the crystallinity of polymers. All figures related to the methods had been redrawn. By using the same symbol for the same concept, the formulas used in the methods have been updated and the methods have been made more understandable for application in new studies. Besides, the crystallinity values obtained in the studies in which the methods were developed were given in tables. Finally, the applications in other studies of the methods were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65

Similar content being viewed by others

References

  1. Gehman SD, Field JE (1939) An X-ray investigation of crystallinity in rubber. J Appl Phys 10:564–572. https://doi.org/10.1063/1.1707343

    Article  CAS  Google Scholar 

  2. Field JE (1941) An X-ray study of the proportion of crystalline and amorphous components in stretched rubber. J Appl Phys 12:23–34. https://doi.org/10.1063/1.1712848

    Article  CAS  Google Scholar 

  3. Field JE (1941) An X-ray study of the proportion of crystalline and amorphous components in stretched rubber. Rubber Chem Technol 14:555–571. https://doi.org/10.5254/1.3540051

    Article  CAS  Google Scholar 

  4. Conrad CC, Scroggie AG (1945) Chemical characterization of rayon yarns and cellulosic raw materials. Ind Eng Chem 37:592–598. https://doi.org/10.1021/ie50426a025

    Article  CAS  Google Scholar 

  5. Ingersoll HG (1946) Fine structure of viscose rayon. J Appl Phys 17:924–939. https://doi.org/10.1063/1.1707665

    Article  CAS  Google Scholar 

  6. Goppel JM (1946) Quantitatieve röntgenografische onderzoekingen aan rubber. Doctoral Thesis, Technische Hogeschool van Delft

  7. Goppel JM (1948) On the degree of crystallinity in natural rubber. I. An improved method to determine the degree of crystallization in rubber. Rubber Chem Technol 21:773–783. https://doi.org/10.5254/1.3546957

    Article  CAS  Google Scholar 

  8. Goppel JM (1949) On the degree of crystallinity in natural rubber. I. An improved method to determine the degree of crystallization in rubber. Appl Sci Res A1:3–17. https://doi.org/10.1007/BF02120311

    Article  Google Scholar 

  9. Hermans PH, Weidinger A (1948) The degree of crystallinity in native and regenerated cellulose fibres following from X-ray analysis. Bull Soc Chim Belg 57:123–135. https://doi.org/10.1002/bscb.19480570403

    Article  Google Scholar 

  10. Hermans PH, Weidinger A (1948) Quantitative X-ray investigations on the crystallinity of cellulose fibers. A background analysis. J Appl Phys 19:491–506. https://doi.org/10.1063/1.1698162

    Article  CAS  Google Scholar 

  11. Hermans PH, Weidinger A (1949) X-ray studies on the crystallinity of cellulose. J Polym Sci 4:135–144. https://doi.org/10.1002/pol.1949.120040203

    Article  CAS  Google Scholar 

  12. Hermans PH, Weidinger A (1949) Estimation of crystallinity of some polymers from X-ray intensity measurements. J Polym Sci 4:709–723. https://doi.org/10.1002/pol.1949.120040604

    Article  CAS  Google Scholar 

  13. Hermans PH (1949) Der kristalline Anteil in nativen und regenerierten Zellulosefasern aus Röntgenstreuungsuntersuchungen. Kolloid-Z 115:103–112. https://doi.org/10.1007/BF01501439

    Article  CAS  Google Scholar 

  14. Hermans PH (1951) Bestimmung des kristallinen Anteils in makromolekularen Systemen auf röntgenographischem Wege. Kolloid-Z 120:3–24. https://doi.org/10.1007/BF01513307

    Article  CAS  Google Scholar 

  15. Hosemann R (1963) Crystalline and paracrystalline order in high polymers. J Appl Phys 34:25–41. https://doi.org/10.1063/1.1729085

    Article  CAS  Google Scholar 

  16. Kavesh S, Schultz JM (1969) Meaning and measurement of crystallinity in polymers: A review. Polym Eng Sci 9:331–338. https://doi.org/10.1002/pen.760090504

    Article  CAS  Google Scholar 

  17. Włochowicz A, Jeziorny A (1972) Determination of crystallinity in polyester fibers by X-ray methods. J Polym Sci Part A-2 Polym Phys 10:1407–1414. https://doi.org/10.1002/pol.1972.160100801

  18. Nakai Y, Fukuoka E, Nakajima S, Hasegawa J (1977) Crystallinity and physical characteristics of microcrystalline cellulose. Chem Pharm Bull 25:96–101. https://doi.org/10.1248/cpb.25.96

    Article  CAS  Google Scholar 

  19. Gusev GV (1978) Hermans-Weidinger X-ray diffraction technique for determining polymer crystallinity and the use of the Ruland ratio. Polym Sci USSR 20:1295–1297. https://doi.org/10.1016/0032-3950(78)90270-8

    Article  Google Scholar 

  20. Johnson DJ (1980) Crystallinity, crystallite size and lattice perfection in fibrous polymers. Adv X-Ray Anal 24:25–36. https://doi.org/10.1154/S0376030800007126

    Article  Google Scholar 

  21. Spruiell JE, Clark ES (1980) Unit cell and crystallinity. In: Marton L, Marton C (eds) Methods of experimental physics, vol 16. Polymers, Part B: Crystal structure and morphology. Academic Press, New York, pp 114–127

    Google Scholar 

  22. Otsuka M, Kaneniwa N (1983) Effect of grinding on the degree of crystallinity of cephalexin powder. Chem Pharm Bull 31:4489–4495. https://doi.org/10.1248/cpb.31.4489

    Article  CAS  Google Scholar 

  23. Doelker E, Gurny R (1987) Degrees of crystallinity and polymerization of modified cellulose powders for direct tableting. Powder Technol 52:207–213. https://doi.org/10.1016/0032-5910(87)80106-7

    Article  CAS  Google Scholar 

  24. Richter U, Krause T, Schempp W (1991) Untersuchungen zur alkalibehandlung von cellulosefasern. Teil 1. Infrarotspektroskopische und Röntgenographische beurteilung der änderung des ordnungszustandes. Angew Makromol Chem 185&186:155–167. https://doi.org/10.1002/apmc.1991.051850115

    Article  Google Scholar 

  25. Isasi JR, Mandelkern L, Galante MJ, Alamo RG (1999) The degree of crystallinity of monoclinic isotactic poly(propylene). J Polym Sci B Polym Phys 37:323–334. https://doi.org/10.1002/(SICI)1099-0488(19990215)37:4%3c323::AID-POLB6%3e3.0.CO;2-3

  26. Terinte N, Ibbett R, Schuster KC (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): Comparison between measurement techniques. Lenzinger Berichte 89:118–131

    CAS  Google Scholar 

  27. Flaschner L, Kast W (1947) Röntgenographische Bestimmung des Verhältnisses von kristalliner und amorpher Substanz in Zellulosefasern. Naturwissenschaften 34:56–57. https://doi.org/10.1007/BF00596836

    Article  Google Scholar 

  28. Flaschner L (1948) Röntgenographische Bestimmung des Verhältnisses von kristalliner zu amorpher Substanz in Zellulosefasern. Ann Phys 437:370–392. https://doi.org/10.1002/andp.19484370706

    Article  Google Scholar 

  29. Kast W, Flaschner L (1948) Eine röntgenographische Methode zur Bestimmung des Verhältnisses von kristalliner und amorpher Substanz in Zellulosefasern. Kolloid-Z 111:6–15. https://doi.org/10.1007/BF01522012

    Article  CAS  Google Scholar 

  30. Matthews JL, Peiser HS, Richards RB (1949) The X-ray measurement of the amorphous content of polythene samples. Acta Crystallogr 2:85–90. https://doi.org/10.1107/S0365110X49000199

    Article  CAS  Google Scholar 

  31. Clark GL, Terford HC (1955) Quantitative X-ray determination of amorphous phase in wood pulps as related to physical and chemical properties. Anal Chem 27:888–895. https://doi.org/10.1021/ac60102a006

    Article  CAS  Google Scholar 

  32. Natta G, Corradini P, Cesari M (1957) Determinazione quantitativa della cristallinità del polipropilene. Atti Accad Naz dei Lincei Cl Sci Fis Mat Nat 22:11–17

    CAS  Google Scholar 

  33. Natta G, Corradini P, Cesari M (1967) Quantitative determination of the crystallinity of polypropylene. In: Natta G, Danusso F (eds) Stereoregular polymers and stereospecific polymerizations: The contributions of Giulio Natta and his school to polymer chemistry, vol 1. Pergamon Press Ltd., London, p 179

    Chapter  Google Scholar 

  34. Ryland AL (1958) X-ray diffraction. J Chem Educ 35:80–83. https://doi.org/10.1021/ed035p80

    Article  CAS  Google Scholar 

  35. Johnson JE (1959) X-ray diffraction studies of the crystallinity in polyethylene terephthalate. J Appl Polym Sci 2:205–209. https://doi.org/10.1002/app.1959.070020514

    Article  CAS  Google Scholar 

  36. Kilian HG, Jenckel E (1959) Schmelzen und Kristallisieren des 4,6-Polyurethans nach röntgenographischen Messungen. Kolloid-Z 165:25–31. https://doi.org/10.1007/bf01797341

    Article  CAS  Google Scholar 

  37. Kilian HG, Jenckel E (1959) Schmelzen und Kristallisieren einiger Hochpolymerer nach röntgenographischen Messungen. Z Elektrochem 63:308–321. https://doi.org/10.1002/bbpc.19590630226

    Article  CAS  Google Scholar 

  38. Kilian HG, Halboth H, Jenckel E (1960) Röntgenographische Untersuchungen über das Schmelz- und Kristallisationsverhalten vom Polyterephthalsäureglykolester (PTGE). Kolloid-Z 172:166–177. https://doi.org/10.1007/BF01515800

    Article  CAS  Google Scholar 

  39. Kilian HG (1961) Kristallisieren und Schmelzen von verschiedenen Hochpolymeren nach röntgenographischen Messungen. Kolloid-Z 176:49–62. https://doi.org/10.1007/BF01520034

    Article  CAS  Google Scholar 

  40. Wakelin JH, Virgin HS, Crystal E (1959) Development and comparison of two X-ray methods for determining the crystallinity of cotton cellulose. J Appl Phys 30:1654–1662. https://doi.org/10.1063/1.1735031

    Article  CAS  Google Scholar 

  41. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. https://doi.org/10.1186/1754-6834-3-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. https://doi.org/10.1177/004051755902901003

    Article  CAS  Google Scholar 

  43. Haji A, Rahbar RS, Kalantari B (2012) The effect of hot multistage drawing on molecular structure and optical properties of polyethylene terephthalate fibers. Mater Res 15:554–560. https://doi.org/10.1590/S1516-14392012005000076

    Article  CAS  Google Scholar 

  44. Farrow G, Preston D (1960) Measurement of crystallinity in drawn polyethylene terephthalate fibres by X-ray diffraction. Br J Appl Phys 11:353–358. https://doi.org/10.1088/0508-3443/11/8/310

    Article  CAS  Google Scholar 

  45. Farrow G (1961) The measurement of crystallinity in polypropylene fibres by X-ray diffraction. Polymer 2:409–417. https://doi.org/10.1016/0032-3861(61)90046-5

    Article  CAS  Google Scholar 

  46. Urbańczyk GW (1960) Determination of polycaprolactam fiber crystallinity by X-ray differential-filtration method. J Polym Sci 45:161–168. https://doi.org/10.1002/pol.1960.1204514515

    Article  Google Scholar 

  47. Ant-Wuorinen O, Visapää A (1961) Diffractometric method for the evaluation of the crystallinity of cellulose. Pap Puu 43:337–347

    Google Scholar 

  48. Ant-Wuorinen O, Visapää A (1962) X-ray diffractometric method for the determination of the crystallinity of cellulose. VTT Technical Research Centre of Finland, Valtion teknillinen tutkimuslaitos. Tiedotus: Sarja IV. Kemia, No: 44, Helsinki

  49. Hendus H, Schnell G (1961) Röntgenographische und IR-spektroskopische Kristallinitätsbestimmung an Polyäthylen. Kunststoffe 51:69–74

    CAS  Google Scholar 

  50. Gopalan MR, Mandelkern L (1967) Degree of crystallinity of linear polyethylene from wide-angle X-ray diffraction. J Polym Sci B Polym Lett 5:925–929. https://doi.org/10.1002/pol.1967.110051007

    Article  CAS  Google Scholar 

  51. Wunderlich B (1973) Macromolecular physics, Vol. 1: Crystal structure, morphology, defects. Academic Press, New York

  52. Kissin YV (2013) Polyethylene: End-use properties and their physical meaning. Hanser Publishers, Munich

    Google Scholar 

  53. Krässig H, Kitchen W (1961) Factors influencing tensile properties of cellulose fibers. J Polym Sci 51:123–172. https://doi.org/10.1002/pol.1961.1205115509

    Article  Google Scholar 

  54. Akinci A, Akbulut H, Yilmaz F (2007) The effect of the red mud on polymer crystallization and the interaction between the polymer-filler. Polym Plast Technol Eng 46:31–36. https://doi.org/10.1080/03602550600916258

    Article  CAS  Google Scholar 

  55. Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr 14:1180–1185. https://doi.org/10.1107/S0365110X61003429

    Article  CAS  Google Scholar 

  56. Ruland W (1964) Crystallinity and disorder parameters in nylon 6 and nylon 7. Polymer 5:89–102. https://doi.org/10.1016/0032-3861(64)90122-3

    Article  CAS  Google Scholar 

  57. Vonk CG (1973) Computerization of Ruland’s X-ray method for determination of the crystallinity in polymers. J Appl Crystallogr 6:148–152. https://doi.org/10.1107/S0021889873008332

    Article  CAS  Google Scholar 

  58. Patil NB, Dweltz NE, Radhakrishnan T (1962) X-ray measurements of crystallinity and crystallite size in swollen and hydrolyzed cottons. Text Res J 32:460–471. https://doi.org/10.1177/004051756203200603

    Article  CAS  Google Scholar 

  59. Jayme G, Knolle H (1964) Beitrag zur empirischen röntgenographischen Bestimmung des Kristallinitätsgrades cellulosehaltiger Stoffe. Das Papier 18:249–255

    CAS  Google Scholar 

  60. Krigbaum WR, Roe R-J (1964) Diffraction study of crystallite orientation in a stretched polychloroprene vulcanizate. J Polym Sci A Gen Pap 2:4391–4414. https://doi.org/10.1002/pol.1964.100021010

    Article  CAS  Google Scholar 

  61. Bosley DE (1964) X-ray determination of crystallinity in poly(ethylene terephthalate). J Appl Polym Sci 8:1521–1529. https://doi.org/10.1002/app.1964.070080402

    Article  CAS  Google Scholar 

  62. Dumbleton JH, Bowles BB (1966) X-ray determination of crystallinity and orientation in poly(ethylene terephthalate). J Polym Sci A-2 Polym Phys 4:951–958. https://doi.org/10.1002/pol.1966.160040610

  63. Sotton M, Arniaud A-M, Rabourdin C (1978) Crystallinity and disorder in poly(ethylene terephthalate) fibers. Specific example of preoriented yarns (POY). J Appl Polym Sci 22:2585–2608. https://doi.org/10.1002/app.1978.070220916

    Article  CAS  Google Scholar 

  64. Corradini P, Martuscelli E, Martynov MA (1967) An absolute method for the determination of crystallinity in polymers. Makromol Chem 108:285–287. https://doi.org/10.1002/macp.1967.021080124

    Article  CAS  Google Scholar 

  65. Martuscelli E, Martynov MA (1968) Application of an absolute X-ray method for the determination of the crystalline fraction of a series of polymers. Makromol Chem 111:50–66. https://doi.org/10.1002/macp.1968.021110105

    Article  CAS  Google Scholar 

  66. Katayama K, Amano T, Nakamura K (1968) Structural formation during melt spinning process. Kolloid-Z Z Polym 226:125–134. https://doi.org/10.1007/BF02086256

    Article  CAS  Google Scholar 

  67. Hindeleh AM, Johnson DJ (1970) Correlation crystallinity and physical properties of heat-treated cellulose triacetate fibres. Polymer 11:666–680. https://doi.org/10.1016/0032-3861(70)90019-4

    Article  CAS  Google Scholar 

  68. Hindeleh AM, Johnson DJ (1971) The resolution of multipeak data in fibre science. J Phys D Appl Phys 4:259–263. https://doi.org/10.1088/0022-3727/4/2/311

    Article  CAS  Google Scholar 

  69. Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput J 7:155–162. https://doi.org/10.1093/comjnl/7.2.155

    Article  Google Scholar 

  70. Kavesh S, Schultz JM (1970) Lamellar and interlamellar structure in melt-crystallized polyethylene. I. Degree of crystallinity, atomic positions, particle size, and lattice disorder of the first and second kinds. J Polym Sci A-2 Polym Phys 8:243–276. https://doi.org/10.1002/pol.1970.160080205

  71. Kavesh S, Schultz JM (1971) Lamellar and interlamellar structure in melt-crystallized polyethylene. II. Lamellar spacing, interlamellar thickness, interlamellar density, and stacking disorder. J Polym Sci A-2 Polym Phys 9:85–114. https://doi.org/10.1002/pol.1971.160090107

  72. Alexander L, Klug HP (1948) Basic aspects of X-ray absorption in quantitative diffraction analysis of powder mixtures. Anal Chem 20:886–889. https://doi.org/10.1021/ac60022a002

    Article  CAS  Google Scholar 

  73. Chung FH, Scott RW (1973) A new approach to the determination of crystallinity of polymers by X-ray diffraction. J Appl Crystallogr 6:225–230. https://doi.org/10.1107/S0021889873008514

    Article  CAS  Google Scholar 

  74. Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Z Z Polym 251:980–990. https://doi.org/10.1007/BF01498927

    Article  CAS  Google Scholar 

  75. Shimamura K, Murakami S, Kobayashi K (1974) X-ray small angle scattering study on the density of interlamellar regions of drawn polyethylene under tensile stress. Bull Inst Chem Res, Kyoto Univ 52:359–367

    CAS  Google Scholar 

  76. Martinez Salazar J, Gonzalez Ortega JC, Balta Calleja FJ (1977) On the separation of crystalline and diffuse X-ray scattering in semicrystalline polymers. An Fís 73:244–247

    CAS  Google Scholar 

  77. Pitha J, Jones RN (1966) A comparison of optimization methods for fitting curves to infrared band envelopes. Can J Chem 44:3031–3050. https://doi.org/10.1139/v66-445

    Article  CAS  Google Scholar 

  78. Jones RN (1969) Computer programs for absorption spectrophotometry. Appl Opt 8:597–601. https://doi.org/10.1364/AO.8.000597

    Article  CAS  PubMed  Google Scholar 

  79. Gehrke R, Zachmann HG (1981) Bestimmung des Kristallisationsgrades und der Kristallgitterstörungen in Polyethylenterephthalat mit Hilfe der röntgenographischen Methode von Ruland. Makromol Chem 182:627–635. https://doi.org/10.1002/macp.1981.021820231

    Article  CAS  Google Scholar 

  80. Polizzi S, Fagherazzi G, Benedetti A, Battagliarin M, Asano T (1990) A fitting method for the determination of crystallinity by means of X-ray diffraction. J Appl Crystallogr 23:359–365. https://doi.org/10.1107/S0021889890004939

    Article  CAS  Google Scholar 

  81. Sołtys J, Lisowski Z, Knapczyk J (1984) X-ray diffraction study of the crystallinity index and the structure of the microcrystalline cellulose. Acta Pharm Technol 30:174–180

    Google Scholar 

  82. Hsieh Y-L, Mo Z (1987) Crystalline structures of poly(ethylene terephthalate) fibers. J Appl Polym Sci 33:1479–1485. https://doi.org/10.1002/app.1987.070330504

    Article  CAS  Google Scholar 

  83. Mo Z, Yang B, Zhang H (1991) The degree of crystallinity in polymers by X-ray diffraction analysis. Anal Sci 7:1637–1640. https://doi.org/10.2116/analsci.7.Supple_1637

    Article  CAS  Google Scholar 

  84. Mo Z, Zhang H (1995) The degree of crystallinity in polymers by wide-angle X-ray diffraction (WAXD). J Macromol Sci C Polym Rev 35:555–580. https://doi.org/10.1080/15321799508021751

    Article  Google Scholar 

  85. Maslen EN, Fox AG, O’Keefe MA (2004) X-ray scattering. In: Prince E (ed) International tables for crystallography, vol C. Mathematical, physical and chemical tables. Kluwer Academic Publishers, Dordrecht, pp 578–581

    Google Scholar 

  86. Ioelovich MYa, Veveris GP, (1987) Determination of cellulose crystallinity by X-ray diffraction method. J Wood Chem 5:72–80

    Google Scholar 

  87. Ryan AJ, Bras W, Mant GR, Derbyshire GE (1994) A direct method to determine the degree of crystallinity and lamellar thickness of polymers: application to polyethylene. Polymer 35:4537–4544. https://doi.org/10.1016/0032-3861(94)90799-4

    Article  CAS  Google Scholar 

  88. Ryan AJ, Stanford JL, Bras W, Nye TMW (1997) A synchrotron X-ray study of melting and recrystallization in isotactic polypropylene. Polymer 38:759–768. https://doi.org/10.1016/S0032-3861(96)00583-6

    Article  CAS  Google Scholar 

  89. Jones AT, Aizlewood JM, Beckett DR (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158. https://doi.org/10.1002/macp.1964.020750113

    Article  Google Scholar 

  90. Lotz B, Wittmann JC, Lovinger AJ (1996) Structure and morphology of poly(propylenes): a molecular analysis. Polymer 37:4979–4992. https://doi.org/10.1016/0032-3861(96)00370-9

    Article  CAS  Google Scholar 

  91. Dong M, Guo Z, Yu J, Su Z (2008) Crystallization behavior and morphological development of isotactic polypropylene with an aryl amide derivative as β-form nucleating agent. J Polym Sci B Polym Phys 46:1725–1733. https://doi.org/10.1002/polb.21508

    Article  CAS  Google Scholar 

  92. Kawakami D, Burger C, Ran S, Avila-Orta C, Sics I, Chu B, Chiao S-M, Hsiao BS, Kikutani T (2008) New insights into lamellar structure development and SAXS/WAXD sequence appearance during uniaxial stretching of amorphous poly(ethylene terephthalate) above glass transition temperature. Macromolecules 41:2859–2867. https://doi.org/10.1021/ma702554t

    Article  CAS  Google Scholar 

  93. Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2010) Multivariate statistical analysis of X-ray data from cellulose: A new method to determine degree of crystallinity and predict hydrolysis rates. Bioresour Technol 101:4461–4471. https://doi.org/10.1016/j.biortech.2010.01.068

    Article  CAS  PubMed  Google Scholar 

  94. Boudouris BW, Ho V, Jimison LH, Toney MF, Salleo A, Segalman RA (2011) Real-time observation of poly(3-alkylthiophene) crystallization and correlation with transient optoelectronic properties. Macromolecules 44:6653–6658. https://doi.org/10.1021/ma201316a

    Article  CAS  Google Scholar 

  95. Abdelsamie M, Toney MF (2019) Microstructural characterization of conjugated organic semiconductors by X-ray scattering. In: Reynolds JR, Thompson BC, Skotheim TA (eds) Conjugated polymers: properties, processing, and applications, CRC Press, Boca Raton, pp 404–405

  96. Baker JL, Jimison LH, Mannsfeld S, Volkman S, Yin S, Subramanian V, Salleo A, Alivisatos AP, Toney MF (2010) Quantification of thin film crystallographic orientation using X-ray diffraction with an area detector. Langmuir 26:9146–9151. https://doi.org/10.1021/la904840q

    Article  CAS  PubMed  Google Scholar 

  97. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  98. Young RA (1995) Introduction to the Rietveld method. In: Young RA (ed) The Rietveld method. Oxford University Press, New York, pp 1–36

    Google Scholar 

  99. Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192. https://doi.org/10.1107/S0021889810043955

    Article  CAS  Google Scholar 

  100. Balko J, Lohwasser RH, Sommer M, Thelakkat M, Thurn-Albrecht T (2013) Determination of the crystallinity of semicrystalline poly(3-hexylthiophene) by means of wide-angle X-ray scattering. Macromolecules 46:9642–9651. https://doi.org/10.1021/ma401946w

    Article  CAS  Google Scholar 

  101. Ward K Jr (1950) Crystallinity of cellulose and its significance for the fiber properties. Text Res J 20:363–372. https://doi.org/10.1177/004051755002000601

    Article  CAS  Google Scholar 

  102. Hermans PH (1951) X-ray investigations on the crystallinity of cellulose. Makromol Chem 6:25–29. https://doi.org/10.1002/macp.1951.020060103

    Article  CAS  Google Scholar 

  103. Hermans PH, Weidinger A (1951) Crystallinity of celluloses after treatment with sodium hydroxide (mercerization). J Polym Sci 6:533–538. https://doi.org/10.1002/pol.1951.120060503

    Article  CAS  Google Scholar 

  104. Nyburg SC (1954) X-ray determination of crystallinity in deformed natural rubber. Br J Appl Phys 5:321–324. https://doi.org/10.1088/0508-3443/5/9/304

    Article  CAS  Google Scholar 

  105. Aggarwal SL, Tilley GP (1955) Determination of crystallinity in polyethylene by X-ray diffractometer. J Polym Sci 18:17–26. https://doi.org/10.1002/pol.1955.120188702

    Article  CAS  Google Scholar 

  106. Smith DC (1956) Molecular structure of marlex polymers. Ind Eng Chem 48:1161–1164. https://doi.org/10.1021/ie50559a023

    Article  CAS  Google Scholar 

  107. Mann J, Marrinan HJ (1956) The reaction between cellulose and heavy water. Part 3. —A quantitative study by infra-red spectroscopy. Trans Faraday Soc 52:492–497. https://doi.org/10.1039/TF9565200492

    Article  CAS  Google Scholar 

  108. Kouris M, Ruck H, Mason SG (1958) The effect of water removal on the crystallinity of cellulose. Can J Chem 36:931–948. https://doi.org/10.1139/v58-135

    Article  CAS  Google Scholar 

  109. Ohlberg SM, Alexander LE, Warrick EL (1958) Crystallinity and orientation in silicone rubber. I. X-ray studies J Polym Sci 27:1–17. https://doi.org/10.1002/pol.1958.1202711501

    Article  CAS  Google Scholar 

  110. Quynn RG, Riley JL, Young DA, Noether HD (1959) Density, crystallinity, and heptane insolubility in isotactic polypropylene. J Appl Polym Sci 2:166–173. https://doi.org/10.1002/app.1959.070020506

    Article  CAS  Google Scholar 

  111. Farrow G, Ward IM (1960) Comparison of X-ray and nuclear magnetic resonance measurements of crystallinity in polyethylene terephthalate. Br J Appl Phys 11:543–546. https://doi.org/10.1088/0508-3443/11/12/304

    Article  CAS  Google Scholar 

  112. Sterling Cl (1960) Crystallinity of potato starch. Stärke 12:182–185. https://doi.org/10.1002/star.19600120605

    Article  CAS  Google Scholar 

  113. Lee C-L (1960) Studies on the crystallinity of wood cellulose fibres by X-ray methods. Master Thesis, The University of British Columbia

  114. Farrow G, Ward IM (1960) Crystallinity in poly(ethylene terephthalate): A comparison of X-ray, infra-red and density measurements. Polymer 1:330–339. https://doi.org/10.1016/0032-3861(60)90043-4

    Article  CAS  Google Scholar 

  115. Urbańczyk GW (1962) Regarding the change of crystallinity and average crystallite size occurring at polycaprolactam filaments by the cold drawing process. J Polym Sci 59:215–220. https://doi.org/10.1002/pol.1962.1205916717

    Article  Google Scholar 

  116. Parker JL (1962) The effects of ethylamine decrystallization of cellulose fibers on the viscoelastic properties of paper. Doctor's Dissertation, Lawrence College

  117. Mann J (1962) Modern methods of determining crystallinity in cellulose. Pure Appl Chem 5:91–105. https://doi.org/10.1351/pac196205010091

    Article  CAS  Google Scholar 

  118. Farrow G, Bagley J (1962) The measurement of molecular orientation in polyethylene terephthalate filaments by X-ray diffraction. Text Res J 32:587–598. https://doi.org/10.1177/004051756203200709

    Article  Google Scholar 

  119. Statton WO (1963) An X-ray crystallinity index method with application to poly(ethylene terephthalate). J Appl Polym Sci 7:803–815. https://doi.org/10.1002/app.1963.070070302

    Article  CAS  Google Scholar 

  120. Farrow G (1963) Crystallinity, “crystallite size” and melting point of polypropylene. Polymer 4:191–197. https://doi.org/10.1016/0032-3861(63)90025-9

    Article  CAS  Google Scholar 

  121. Khairy M, Morsi S, Sterling C (1966) Accessibility of starch by deuteration. Carbohydr Res 3:97–101. https://doi.org/10.1016/S0008-6215(00)82301-0

    Article  Google Scholar 

  122. Wakelyn NT, Young PR (1966) Crystallinity index of poly(ethylene terephthalate) by X-ray diffractometry and differential scanning calorimetry. J Appl Polym Sci 10:1421–1438. https://doi.org/10.1002/app.1966.070101004

    Article  CAS  Google Scholar 

  123. Morsi MKS, Sterling C, Volman DH (1967) Sorption of water vapor by B pattern starch. J Appl Polym Sci 11:1217–1225. https://doi.org/10.1002/app.1967.070110719

    Article  CAS  Google Scholar 

  124. Ray PK (1967) On the degree of crystallinity in some cellulose fibers under different moisture conditions. Text Res J 37:434–436. https://doi.org/10.1177/004051756703700516

    Article  CAS  Google Scholar 

  125. Viswanathan A, Venkatakrishnan V (1969) Disorder in cellulosic fibers. J Appl Polym Sci 13:785–795. https://doi.org/10.1002/app.1969.070130417

    Article  CAS  Google Scholar 

  126. Weinstein M, Broido A (1970) Pyrolysis-crystallinity relationships in cellulose. Combust Sci Technol 1:287–292. https://doi.org/10.1080/00102206908952208

    Article  CAS  Google Scholar 

  127. Nomura T, Yamada T (1972) Structural observation on wood and bamboo by X-ray. Wood Res 52:1–12

    Google Scholar 

  128. Włochowicz A, Jeziorny A (1972) Determination of crystallinity in polyester fibers by X-ray methods. J Polym Sci A-2 Polym Phys 10:1407–1414. https://doi.org/10.1002/pol.1972.160100801

  129. Lelievre J (1974) Starch damage. Stärke 26:85–88. https://doi.org/10.1002/star.19740260305

    Article  CAS  Google Scholar 

  130. Baldrian J, Hradil J, Štamberg J (1974) Chemical transformations of polymers. XIII. Effect of supermolecular structure on the transformation of polyethylene with chlorosulphonic acid. J Polym Sci Polym Symp 47:241–249. https://doi.org/10.1002/polc.5070470129

    Article  CAS  Google Scholar 

  131. Gupta VB, Kumar S (1976) Evaluation of crystallinity in polyethylene terephthalate fibre by X-ray diffraction. Indian J Text Res 1:72–76

    CAS  Google Scholar 

  132. Brady DG (1976) The crystallinity of poly(phenylene sulfide) and its effect on polymer properties. J Appl Polym Sci 20:2541–2551. https://doi.org/10.1002/app.1976.070200921

    Article  CAS  Google Scholar 

  133. Nara Sh, Mori A, Komiya T (1978) Study on relative crystallinity of moist potato starch. Stärke/Starch 30:111–114. https://doi.org/10.1002/star.19780300403

    Article  CAS  Google Scholar 

  134. Fan LT, Lee Y-H, Beardmore DH (1980) Mechanism of the enzymatic hydrolysis of cellulose: Effects of major structural features of cellulose on enzymatic hydrolysis. Biotechnol Bioeng 22:177–199. https://doi.org/10.1002/bit.260220113

    Article  CAS  Google Scholar 

  135. Dragsdorf RD, Varriano Marston E (1980) Bread staling: X-ray diffraction studies on bread supplemented with α-amylases from different sources. Cereal Chem 57:310–314

    CAS  Google Scholar 

  136. Mitra GB, Mukherjee PS (1980) X-ray diffraction study of fibrous polymers. I. Degree of paracrystallinity—a new parameter for characterizing fibrous polymers. Polymer 21:1403–1409. https://doi.org/10.1016/0032-3861(80)90140-8

    Article  CAS  Google Scholar 

  137. Martinez Salazar J, Baltá Calleja FJ (1980) On the inclusion of chain defects in the polyethylene lattice a statistical approach. Polym Bull 2:163–167. https://doi.org/10.1007/BF00254579

    Article  CAS  Google Scholar 

  138. Hindeleh AM (1980) X-ray characterization of viscose rayon and the significance of crystallinity on tensile properties. Text Res J 50:581–589. https://doi.org/10.1177/004051758005001001

    Article  CAS  Google Scholar 

  139. Tanaka F, Koshijima T, Okamura K (1981) Characterization of cellulose in compression and opposite woods of a Pinus densiflora tree grown under the influence of strong wind. Wood Sci Technol 15:265–273. https://doi.org/10.1007/BF00350944

    Article  Google Scholar 

  140. Fontaine F, Ledent J, Groeninckx G, Reynaers H (1982) Morphology and melting behaviour of semi-crystalline poly(ethylene terephthalate): 3. Quantification of crystal perfection and crystallinity. Polymer 23:185–191. https://doi.org/10.1016/0032-3861(82)90298-1

    Article  CAS  Google Scholar 

  141. Hu T-Y (1982) Characterization of the crystallinity of polytetrafluoroethylene by X-ray and IR spectroscopy, differential scanning calorimetry, viscoelastic spectroscopy and the use of a density gradient tube. Wear 82:369–376. https://doi.org/10.1016/0043-1648(82)90229-0

    Article  CAS  Google Scholar 

  142. Foner HA, Adan N (1983) The characterization of papers by X-ray diffraction (XRD): Measurement of cellulose crystallinity and determination of mineral composition. J Forensic Sci Soc 23:313–321. https://doi.org/10.1016/S0015-7368(83)72269-3

    Article  CAS  Google Scholar 

  143. Blundell DJ, Osborn BN (1983) The morphology of poly(aryl-ether-ether-ketone). Polymer 24:953–958. https://doi.org/10.1016/0032-3861(83)90144-1

    Article  CAS  Google Scholar 

  144. Retief JJ, le Roux JH (1983) Crystallographic investigations of a paraffinic Fischer-Tropsch wax in relation to a theory of wax structure and behaviour. S Afr J Sci 79:234–239

    CAS  Google Scholar 

  145. Nara S, Sakakura M, Komiya T (1983) On the acid resistance of starch granules. Starch/Stärke 35:266–270. https://doi.org/10.1002/star.19830350803

    Article  CAS  Google Scholar 

  146. Nara S, Komiya T (1983) Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch/Stärke 35:407–410. https://doi.org/10.1002/star.19830351202

    Article  CAS  Google Scholar 

  147. Fink H-P, Fanter D, Philipp B (1985) Röntgen-Weitwinkeluntersuchungen zur übermolekularen Struktur beim Cellulose-I-II-Phasenübergang. Acta Polym 36:1–8. https://doi.org/10.1002/actp.1985.010360101

    Article  CAS  Google Scholar 

  148. Anderson DP (1985) X-ray analysis software: Operation and theory involved in program "DIFF". AFWAL-TR-85–4079, Air Force Wright Aeronautical Laboratories, Ohio

  149. Nurul Huda M, Dragaun H, Bauer S, Muschik H, Skalicky P (1985) A study of the crystallinity index of polypropylene fibres. Colloid Polym Sci 263:730–737. https://doi.org/10.1007/BF01422855

    Article  CAS  Google Scholar 

  150. Vonk CG, Pijpers AP (1985) An X-ray diffraction study of nonlinear polyethylene. I. Room-temperature observations. J Polym Sci Polym Phys Ed 23:2517–2537. https://doi.org/10.1002/pol.1985.180231210

    Article  CAS  Google Scholar 

  151. Mo Z, Lee K-B, Moon YB, Kobayashi M, Heeger AJ, Wudl F (1985) X-ray scattering from poly(thiophene): crystallinity and crystallographic structure. Macromolecules 18:1972–1977. https://doi.org/10.1021/ma00152a028

    Article  CAS  Google Scholar 

  152. Bertran MS, Dale BE (1986) Determination of cellulose accessibility by differential scanning calorimetry. J Appl Polym Sci 32:4241–4253. https://doi.org/10.1002/app.1986.070320335

    Article  CAS  Google Scholar 

  153. Struszczyk H (1987) Microcrystalline chitosan. I. Preparation and properties of microcrystalline chitosan. J Appl Polym Sci 33:177–189. https://doi.org/10.1002/app.1987.070330115

    Article  CAS  Google Scholar 

  154. Mo Z, Wang L, Zhang H, Han P, Huang B (1987) WAXS studies on block copolymers of ethylene and propylene. J Polym Sci B Polym Phys 25:1829–1837. https://doi.org/10.1002/polb.1987.090250904

    Article  CAS  Google Scholar 

  155. Teeäär R, Serimaa R, Paakkari T (1987) Crystallinity of cellulose, as determined by CP/MAS NMR and XRD methods. Polym Bull 17:231–237. https://doi.org/10.1007/BF00285355

    Article  Google Scholar 

  156. Doelker E, Gurny R, Schurz J, Jánosi A, Matin N (1987) Degrees of crystallinity and polymerization of modified cellulose powders for direct tableting. Powder Technol 52:207–213. https://doi.org/10.1016/0032-5910(87)80106-7

    Article  CAS  Google Scholar 

  157. Clas S-D, Heyding RD, McFaddin DC, Russell KE, Scammell-Bullock MV, Kelusky EC, St-Cyr D (1988) Crystallinities of copolymers of ethylene and 1-alkenes. J Polym Sci B Polym Phys 26:1271–1286. https://doi.org/10.1002/polb.1988.090260611

    Article  CAS  Google Scholar 

  158. Asano T, Dzeick-Pickuth A, Zachmann HG (1989) Influence of catalysts on the rate of crystallization and on the crystal distortions in poly(ethylene terephthalate). J Mater Sci 24:1967–1973. https://doi.org/10.1007/BF02385407

    Article  CAS  Google Scholar 

  159. Larena A, Pinto G (1989) A simple method for evaluating crystallinity of cellulosic films by spectral scattered light. J Mater Sci Lett 8:925–926. https://doi.org/10.1007/BF01729947

    Article  CAS  Google Scholar 

  160. Saafan AA (1989) Effects of structural changes on thermal properties and pyrolysis of modified cotton fibres. J Therm Anal 35:2367–2377. https://doi.org/10.1007/bf01911901

    Article  CAS  Google Scholar 

  161. Focher B, Beltrame PL, Naggi A, Torri G (1990) Alkaline N-deacetylation of chitin enhanced by flash treatments. Reaction kinetics and structure modifications. Carbohydr Polym 12:405–418. https://doi.org/10.1016/0144-8617(90)90090-F

    Article  CAS  Google Scholar 

  162. Rabiej S, Włochowicz A (1990) SAXS and WAXS investigations of the crystallinity in polymers. Angew Makromol Chem 175:81–97. https://doi.org/10.1002/apmc.1990.051750107

    Article  CAS  Google Scholar 

  163. Murthy NS, Minor H (1990) General procedure for evaluating amorphous scattering and crystallinity from X-ray diffraction scans of semicrystalline polymers. Polymer 31:996–1002. https://doi.org/10.1016/0032-3861(90)90243-R

    Article  CAS  Google Scholar 

  164. Isogai A, Usuda M (1990) Crystallinity indexes of cellulosic materials. Sen’i Gakkaishi 46:324–329. https://doi.org/10.2115/fiber.46.8_324

    Article  CAS  Google Scholar 

  165. Majdanac LD, Poleti D, Teodorovic MJ (1991) Determination of the crystallinity of cellulose samples by X-ray diffraction. Acta Polym 42:351–357. https://doi.org/10.1002/actp.1991.010420802

    Article  CAS  Google Scholar 

  166. Richter U, Krause T, Schempp W (1991) Untersuchungen zur Alkalibehandlung von Cellulosefasern. Teil 1. Infrarotspektroskopische und Röntgenographische Beurteilung der Änderung des Ordnungszustandes. Angew Makromol Chem 185:155–167. https://doi.org/10.1002/apmc.1991.051850115

    Article  Google Scholar 

  167. Rabiej S (1991) A comparison of two X-ray diffraction procedures for crystallinity determination. Eur Polym J 27:947–954. https://doi.org/10.1016/0014-3057(91)90038-P

    Article  CAS  Google Scholar 

  168. Ioelovitch M (1992) Zur übermolekularen Struktur von nativen und isolierten Cellulosen. Acta Polym 43:110–113. https://doi.org/10.1002/actp.1992.010430212

    Article  CAS  Google Scholar 

  169. Buschle-Diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibers. J Appl Polym Sci 45:967–979. https://doi.org/10.1002/app.1992.070450604

    Article  CAS  Google Scholar 

  170. Zhishen M, Qingbo M, Jinhua F, Hongfang Z, Donglin C (1993) Crystal structure and thermodynamic parameters of Nylon-1010. Polym Int 32:53–60. https://doi.org/10.1002/pi.4990320110

    Article  Google Scholar 

  171. loelovitch M, Gordeev M (1994) Crystallinity of cellulose and its accessibility during deuteration. Acta Polym 45:121–123. https://doi.org/10.1002/actp.1994.010450211

    Article  Google Scholar 

  172. Gama FM, Teixeira JA, Mota M (1994) Cellulose morphology and enzymatic reactivity: A modified solute exclusion technique. Biotechnol Bioeng 43:381–387. https://doi.org/10.1002/bit.260430506

    Article  CAS  PubMed  Google Scholar 

  173. Rowe RC, McKillop AG, Bray D (1994) The effect of batch and source variation on the crystallinity of microcrystalline cellulose. Int J Pharm 101:169–172. https://doi.org/10.1016/0378-5173(94)90087-6

    Article  CAS  Google Scholar 

  174. Sao KP, Samantaray BK, Bhattacherjee S (1994) X-ray study of crystallinity and disorder in ramie fiber. J Appl Polym Sci 52:1687–1694. https://doi.org/10.1002/app.1994.070521203

    Article  CAS  Google Scholar 

  175. Gupta VB, Jain AK, Radhakrishnan J, Chidambareswaran PK (1994) Crystal perfection in axially oriented poly(ethylene terephthalate) fibers and films and its dependence on process variables. J Macromol Sci B Phys 33:185–207. https://doi.org/10.1080/00222349408248087

    Article  Google Scholar 

  176. Włochowicz A, Kolarz B (1994) Investigation of the degree of crystallinity of acrylonitrile-divinylbenzene copolymers. J Mater Sci 29:660–663. https://doi.org/10.1007/BF00445975

    Article  Google Scholar 

  177. Lee TH, Boey FYC, Khor KA (1995) X-ray diffraction analysis technique for determining the polymer crystallinity in a polyphenylene sulfide composite. Polym Compos 16:481–488. https://doi.org/10.1002/pc.750160606

    Article  CAS  Google Scholar 

  178. Köncke U, Zachmann HG, Baltá-Calleja FJ (1996) New aspects concerning the structure and degree of crystallinity in high-pressure-crystallized poly(ethylene terephthalate). Macromolecules 29:6019–6022. https://doi.org/10.1021/ma960466v

    Article  Google Scholar 

  179. Dwianto W, Tanaka F, Inoue M, Norimoto M (1996) Crystallinity changes of wood by heat or steam treatment. Wood Res 83:47–49

    CAS  Google Scholar 

  180. Liu T, Mo Z, Zhang H, Na H, Wu Z (1997) Variation of crystallographic parameters in PEEKK with heat treatment temperature. Eur Polym J 33:913–918. https://doi.org/10.1016/S0014-3057(96)00224-8

    Article  Google Scholar 

  181. Liu T, Mo Z, Wang S, Zhang H, Na H, Wu Z (1997) Crystal structure and crystallinity of poly(aryl ether biphenyl ether ketone ketone). Macromol Rapid Commun 18:23–30. https://doi.org/10.1002/marc.1997.030180104

    Article  CAS  Google Scholar 

  182. Cheetham NWH, Tao L (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36:277–284. https://doi.org/10.1016/S0144-8617(98)00007-1

    Article  CAS  Google Scholar 

  183. Stubičar N, Šmit I, Stubičar M, Tonejc A, Jánosi A, Schurz J, Zipper P (1998) An X-ray diffraction study of the crystalline to amorphous phase change in cellulose during high-energy dry ball milling. Holzforschung 52:455–458. https://doi.org/10.1515/hfsg.1998.52.5.455

    Article  Google Scholar 

  184. Mizuno A, Mitsuiki M, Motoki M (1998) Effect of crystallinity on the glass transition temperature of starch. J Agric Food Chem 46:98–103. https://doi.org/10.1021/jf970612b

    Article  CAS  PubMed  Google Scholar 

  185. Galvan-Sánchez A, Ureña-Núñez F, Flores-Llamas H, López-Castañares R (1999) Determination of the crystallinity index of iron polymethacrylate. J Appl Polym Sci 74:995–1002. https://doi.org/10.1002/(SICI)1097-4628(19991024)74:4%3c995::AID-APP26%3e3.0.CO;2-N

    Article  Google Scholar 

  186. Fairclough JPA, Hamley IW, Terrill NJ (1999) X-ray scattering in polymers and micelles. Radiat Phys Chem 56:159–173. https://doi.org/10.1016/S0969-806X(99)00279-0

    Article  CAS  Google Scholar 

  187. Wada M, Okano T (2001) Localization of Iα and Iβ phases in algal cellulose revealed by acid treatments. Cellulose 8:183–188. https://doi.org/10.1023/A:1013196220602

    Article  CAS  Google Scholar 

  188. Focher B, Palma MT, Canetti M, Torri G, Cosentino C, Gastaldi G (2001) Structural differences between non-wood plant celluloses: evidence from solid state NMR, vibrational spectroscopy and X-ray diffractometry. Ind Crops Prod 13:193–208. https://doi.org/10.1016/S0926-6690(00)00077-7

    Article  CAS  Google Scholar 

  189. De Souza IJ, Bouchard J, Méthot M, Berry R, Argyropoulos DS (2002) Carbohydrates in oxygen delignification. Part I: Changes in cellulose crystallinity. J Pulp Pap Sci 28:167–170

    Google Scholar 

  190. Andersson S, Serimaa R, Paakkari T, Saranpää P, Pesonen E (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537. https://doi.org/10.1007/s10086-003-0518-x

    Article  Google Scholar 

  191. Gümüskaya E, Usta M, Kirci H (2003) The effects of various pulping conditions on crystalline structure of cellulose in cotton linters. Polym Degrad Stab 81:559–564. https://doi.org/10.1016/S0141-3910(03)00157-5

    Article  CAS  Google Scholar 

  192. Jaworska M, Sakurai K, Gaudon P, Guibal E (2003) Influence of chitosan characteristics on polymer properties. I: Crystallographic properties. Polym Int 52:198–205. https://doi.org/10.1002/pi.1159

    Article  CAS  Google Scholar 

  193. Vishu Kumara AB, Varadaraj MC, Lalitha RG, Tharanathan RN (2004) Low molecular weight chitosans: preparation with the aid of papain and characterization. Biochim Biophys Acta 1670:137–146. https://doi.org/10.1016/j.bbagen.2003.11.004

    Article  CAS  Google Scholar 

  194. Song J-B, Ren M-Q, Chen Q-Y, Wang S-Y, Zhao Q-X, Zhang H-F, Mo Z-S (2004) Determination of degree of crystallinity of nylon 1212 by wide-angle X-ray diffraction. Chinese J Polym Sci 22:491–496

    CAS  Google Scholar 

  195. Ribotta PD, Cuffini S, León AE, Añón MC (2004) The staling of bread: an X-ray diffraction study. Eur Food Res Technol 218:219–223. https://doi.org/10.1007/s00217-003-0835-8

    Article  CAS  Google Scholar 

  196. Rae PJ, Dattelbaum DM (2004) The properties of poly(tetrafluoroethylene) (PTFE) in compression. Polymer 45:7615–7625. https://doi.org/10.1016/j.polymer.2004.08.064

    Article  CAS  Google Scholar 

  197. Andersson S, Wikberg H, Pesonen E, Maunu SL, Serimaa R (2004) Studies of crystallinity of Scots pine and Norway spruce cellulose. Trees 18:346–353. https://doi.org/10.1007/s00468-003-0312-9

    Article  CAS  Google Scholar 

  198. Zhang Y, Xue C, Xue Y, Gao R, Zhang X (2005) Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340:1914–1917. https://doi.org/10.1016/j.carres.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  199. Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS, Park WH, Youk JH (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391. https://doi.org/10.1016/j.carres.2005.08.007

    Article  CAS  PubMed  Google Scholar 

  200. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. https://doi.org/10.1007/s10570-005-9001-8

    Article  CAS  Google Scholar 

  201. Cao Y, Tan H (2005) Study on crystal structures of enzyme-hydrolyzed cellulosic materials by X-ray diffraction. Enzyme Microb Technol 36:314–317. https://doi.org/10.1016/j.enzmictec.2004.09.002

    Article  CAS  Google Scholar 

  202. Karacan I (2005) An in depth study of crystallinity, crystallite size and orientation measurements of a selection of poly(ethylene terephthalate) fibers. Fibers Polym 6:186–199. https://doi.org/10.1007/BF02875642

    Article  CAS  Google Scholar 

  203. Karacan I (2005) X-ray diffraction studies of poly(aryl ether ether ketone) fibers with different degrees of crystallinity and orientation. Fibers Polym 6:206–218. https://doi.org/10.1007/BF02875644

    Article  CAS  Google Scholar 

  204. Mai Y, Zhou Y, Yan D, Hou J (2005) Quantitative dependence of crystallinity on degree of branching for hyperbranched poly[3-ethyl-3-(hydroxymethyl)oxetane]. New J Phys 7:42. https://doi.org/10.1088/1367-2630/7/1/042

    Article  CAS  Google Scholar 

  205. Zhou D, Zhang L, Guo S (2005) Mechanisms of lead biosorption on cellulose/chitin beads. Water Res 39:3755–3762. https://doi.org/10.1016/j.watres.2005.06.033

    Article  CAS  PubMed  Google Scholar 

  206. Shujun W, Wenyuan G, Wei J, Peigen X (2006) Crystallography, morphology and thermal properties of starches from four different medicinal plants of Fritillaria species. Food Chem 96:591–596. https://doi.org/10.1016/j.foodchem.2005.03.014

    Article  CAS  Google Scholar 

  207. Singh V, Ali SZ, Somashekar R, Mukherjee PS (2006) Nature of crystallinity in native and acid modified starches. Int J Food Prop 9:845–854. https://doi.org/10.1080/10942910600698922

    Article  CAS  Google Scholar 

  208. Lanz M (2006) Pharmaceutical powder technology: Towards a science based understanding of the behavior of powder systems. PhD Thesis, University of Basel

  209. Bhimte NA, Tayade PT (2007) Evaluation of microcrystalline cellulose prepared from sisal fibers as a tablet excipient: A technical note. AAPS PharmSciTech 8:E56–E62. https://doi.org/10.1208/pt0801008

    Article  Google Scholar 

  210. Ratnayake WS, Wassinger AB, Jackson DS (2007) Extraction and characterization of starch from alkaline cooked corn masa. Cereal Chem 84:415–422. https://doi.org/10.1094/CCHEM-84-4-0415

    Article  CAS  Google Scholar 

  211. Jiang Z-H, Yang Z, So C-L, Hse C-Y (2007) Rapid prediction of wood crystallinity in Pinus elliotii plantation wood by near-infrared spectroscopy. J Wood Sci 53:449–453. https://doi.org/10.1007/s10086-007-0883-y

    Article  CAS  Google Scholar 

  212. Chebotok EN, Novikov VYu, Konovalova IN (2007) Kinetics of base deacetylation of chitin and chitosan as influenced by their crystallinity. Russ J Appl Chem 80:1753–1758. https://doi.org/10.1134/S1070427207100321

    Article  CAS  Google Scholar 

  213. Fan Y, Saito T, Isogai A (2008) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromol 9:192–198. https://doi.org/10.1021/bm700966g

    Article  CAS  Google Scholar 

  214. Abdou ES, Nagy KSA, Elsabee MZ (2008) Extraction and characterization of chitin and chitosan from local sources. Bioresour Technol 99:1359–1367. https://doi.org/10.1016/j.biortech.2007.01.051

    Article  CAS  PubMed  Google Scholar 

  215. Sun Y, Lin L, Deng H, Li J, He B, Sun R, Ouyang P (2008) Structural changes of bamboo cellulose in formic acid. BioResources 3:297–315

    Article  CAS  Google Scholar 

  216. Yoshida M, Liu Y, Uchida S, Kawarada K, Ukagami Y, Ichinose H, Kaneko S, Fukuda K (2008) Effects of cellulose crystallinity, hemicellulose, and lignin on the enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci Biotechnol Biochem 72:805–810. https://doi.org/10.1271/bbb.70689

    Article  CAS  PubMed  Google Scholar 

  217. Ibbett RN, Domvoglou D, Phillips DAS (2008) The hydrolysis and recrystallisation of lyocell and comparative cellulosic fibres in solutions of mineral acid. Cellulose 15:241–254. https://doi.org/10.1007/s10570-007-9157-5

    Article  CAS  Google Scholar 

  218. Tyler DN, Wooding NS (2008) The determination and the significance of crystallite size in regenerated cellulose fibres. J Soc Dye Colour 74:283–291. https://doi.org/10.1111/j.1478-4408.1958.tb02257.x

    Article  Google Scholar 

  219. Rayirath P, Avramidis S, Mansfield SD (2008) The effect of wood drying on crystallinity and microfibril angle in black spruce (Picea mariana). J Wood Chem Technol 28:167–179. https://doi.org/10.1080/02773810802346950

    Article  CAS  Google Scholar 

  220. Munawar SS, Umemura K, Tanaka F, Kawai S (2008) Effects of alkali, mild steam, and chitosan treatments on the properties of pineapple, ramie, and sansevieria fiber bundles. J Wood Sci 54:28–35. https://doi.org/10.1007/s10086-007-0903-y

    Article  CAS  Google Scholar 

  221. Jonoobi M, Harun J, Shakeri A, Misra M, Oksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639

    Article  CAS  Google Scholar 

  222. Ioelovich M (2009) Accessibility and crystallinity of cellulose. BioResources 4:1168–1177

    Article  CAS  Google Scholar 

  223. Nada A-AMA, El-Kady MY, Abd El-Sayed ES, Amine FM (2009) Preparation and characterization of microcrystalline cellulose (MCC). BioResources 4:1359–1371

    Article  CAS  Google Scholar 

  224. Frost K, Kaminski D, Kirwan G, Lascaris E, Shanks R (2009) Crystallinity and structure of starch using wide angle X-ray scattering. Carbohydr Polym 78:543–548. https://doi.org/10.1016/j.carbpol.2009.05.018

    Article  CAS  Google Scholar 

  225. Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023. https://doi.org/10.1007/s10570-009-9334-9

    Article  CAS  Google Scholar 

  226. Ohwoavworhua FO, Adelakun TA, Okhamafe AO (2009) Processing pharmaceutical grade microcrystalline cellulose from groundnut husk: Extraction methods and characterization. Int J Green Pharm 3:97–104. https://doi.org/10.4103/0973-8258.54895

    Article  Google Scholar 

  227. Dong M, Guo Z-X, Yu J, Su Z-Q (2009) Study of the assembled morphology of aryl amide derivative and its influence on the nonisothermal crystallizations of isotactic polypropylene. J Polym Sci B Polym Phys 47:314–325. https://doi.org/10.1002/polb.21642

    Article  CAS  Google Scholar 

  228. Ioelovich M, Leykin A, Figovsky O (2010) Study of cellulose paracrystallinity. BioResources 5:1393–1407

    Article  CAS  Google Scholar 

  229. Kawakubo T, Karita S, Araki Y, Watanabe S, Oyadomari M, Takada R, Tanaka F, Abe K, Watanabe T, Honda Y, Watanabe T (2010) Analysis of exposed cellulose surfaces in pretreated wood biomass using carbohydrate-binding module (CBM)–cyan fluorescent protein (CFP). Biotechnol Bioeng 105:499–508. https://doi.org/10.1002/bit.22550

    Article  CAS  PubMed  Google Scholar 

  230. Hesse-Ertelt S, Heinze T, Togawa E, Kondo T (2010) Structure elucidation of uniformly 13C-labeled bacterial celluloses from different Gluconacetobacter xylinus strains. Cellulose 17:139–151. https://doi.org/10.1007/s10570-009-9355-4

    Article  CAS  Google Scholar 

  231. da Silva AB, Wisniewski C, Esteves JVA, Gregorio R Jr (2010) Effect of drawing on the dielectric properties and polarization of pressed solution cast β-PVDF films. J Mater Sci 45:4206–4215. https://doi.org/10.1007/s10853-010-4515-3

    Article  CAS  Google Scholar 

  232. Das K, Ray D, Bandyopadhyay NR, Sengupta S (2010) Study of the properties of microcrystalline cellulose particles from different renewable resources by XRD, FTIR, nanoindentation, TGA and SEM. J Polym Environ 18:355–363. https://doi.org/10.1007/s10924-010-0167-2

    Article  CAS  Google Scholar 

  233. Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity – a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582. https://doi.org/10.1111/j.1742-4658.2010.07585.x

    Article  CAS  PubMed  Google Scholar 

  234. Gao Q, Li S, Jian H, Liang S (2011) Preparation and properties of resistant starch from corn starch with enzymes. Afr J Biotechnol 10:1186–1193. https://doi.org/10.5897/AJB10.1381

    Article  CAS  Google Scholar 

  235. Ioelovich M, Leykin A (2011) Study of sorption properties of cellulose and its derivatives. BioResources 6:178–195

    Article  CAS  Google Scholar 

  236. Wang Y, Zhang L, Li X, Gao W (2011) Physicochemical properties of starches from two different yam (Dioscorea Opposita Thunb.) residues. Braz Arch Biol Technol 54:243–251. https://doi.org/10.1590/S1516-89132011000200004

    Article  CAS  Google Scholar 

  237. Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83:122–129. https://doi.org/10.1016/j.carbpol.2010.07.029

    Article  CAS  Google Scholar 

  238. Ciolacu D, Ciolacu F, Popa VI (2011) Amorphous cellulose – structure and characterization. Cellul Chem Technol 45:13–21

    CAS  Google Scholar 

  239. Khajavi R, Esfahani EJ, Sattari M (2011) Crystalline structure of microbial cellulose compared with native and regenerated cellulose. Int J Polym Mater 60:1178–1192. https://doi.org/10.1080/00914037.2010.551372

    Article  CAS  Google Scholar 

  240. Chung H-J (2011) Studies for physicochemical and in vitro digestibility characteristics of flour and starch from chickpea (Cicer arietinum L.). J Food Sci Nutr 16:339–347. https://doi.org/10.3746/jfn.2011.16.4.339

    Article  CAS  Google Scholar 

  241. Popescu M-C, Popescu C-M, Lisa G, Sakata Y (2011) Evaluation of morphological and chemical aspects of different wood species by spectroscopy and thermal methods. J Mol Struct 988:65–72. https://doi.org/10.1016/j.molstruc.2010.12.004

    Article  CAS  Google Scholar 

  242. Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD (2011) Deacetylation of chitosan: Material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4:1399–1416. https://doi.org/10.3390/ma4081399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Karacan İ, Benli H (2011) An X-ray diffraction study for isotactic polypropylene fibers produced with take-up speeds of 2500–4250 m/min. Tekst Konfeksiyon 21:201–209

    Google Scholar 

  244. Xie H, Prausnitz J, Wu X (2012) Determination on crystallinity of ionic liquids pretreated biomass. Adv Mat Res 393–395:668–671. https://doi.org/10.4028/www.scientific.net/AMR.393-395.668

    Article  CAS  Google Scholar 

  245. Jasiukaitytė-Grojzdek E, Kunaver M, Poljanšek I (2012) Influence of cellulose polymerization degree and crystallinity on kinetics of cellulose degradation. BioResources 7:3008–3027

    Article  Google Scholar 

  246. Barnette AL, Lee C, Bradley LC, Schreiner EP, Park YB, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89:802–809. https://doi.org/10.1016/j.carbpol.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  247. Azubuike CP, Rodríguez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19:425–433. https://doi.org/10.1007/s10570-011-9631-y

    Article  CAS  Google Scholar 

  248. Xie RQ, Li XY, Zhang YF (2012) Cellulose pretreatment with 1-methyl-3-methylimidazolium dimethylphosphate for enzymatic hydrolysis. Cellul Chem Technol 46:349–356

    CAS  Google Scholar 

  249. Goh WN, Rosma A, Kaur B, Fazilah A, Karim AA, Bhat R (2012) Microstructure and physical properties of microbial cellulose produced during fermentation of black tea broth (Kombucha). II. Int Food Res J 19:153–158

    CAS  Google Scholar 

  250. Díez-Pascual AM, Naffakh M (2012) Synthesis and characterization of nitrated and aminated poly(phenylene sulfide) derivatives for advanced applications. Mater Chem Phys 131:605–614. https://doi.org/10.1016/j.matchemphys.2011.10.025

    Article  CAS  Google Scholar 

  251. Lee J, Deng Y (2012) Nanoindentation study of individual cellulose nanowhisker-reinforced PVA electrospun fiber. Polym Bull 70:1205–1219. https://doi.org/10.1007/s00289-012-0842-7

    Article  CAS  Google Scholar 

  252. Srithep Y, Nealey P, Turng L-S (2012) Effects of annealing time and temperature on the crystallinity and heat resistance behavior of injection-molded poly(lactic acid). Polym Eng Sci 53:580–588. https://doi.org/10.1002/pen.23304

    Article  CAS  Google Scholar 

  253. Kim H-Y, Park DJ, Kim J-Y, Lim S-T (2013) Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication. Carbohydr Polym 98:295–301. https://doi.org/10.1016/j.carbpol.2013.05.085

    Article  CAS  PubMed  Google Scholar 

  254. Maiti S, Jayaramudu J, Das K, Reddy SM, Sadiku R, Ray SS, Liu D (2013) Preparation and characterization of nano-cellulose with new shape from different precursor. Carbohydr Polym 98:562–567. https://doi.org/10.1016/j.carbpol.2013.06.029

    Article  CAS  PubMed  Google Scholar 

  255. French AD, Cintrón MS (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588. https://doi.org/10.1007/s10570-012-9833-y

    Article  CAS  Google Scholar 

  256. de Campos A, Correa AC, Cannella D, Teixeira EM, Marconcini JM, Dufresne A, Mattoso LHC, Cassland P, Sanadi AR (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose 20:1491–1500. https://doi.org/10.1007/s10570-013-9909-3

    Article  CAS  Google Scholar 

  257. Noor IS, Majid SR, Arof AK (2013) Poly(vinyl alcohol)–LiBOB complexes for lithium–air cells. Electrochim Acta 102:149–160. https://doi.org/10.1016/j.electacta.2013.04.010

    Article  CAS  Google Scholar 

  258. Zhang H, Scholz AK, Merckel Y, Brieu M, Berghezan D, Kramer EJ, Creton C (2013) Strain induced nanocavitation and crystallization in natural rubber probed by real time small and wide angle X-ray scattering. J Polym Sci B Polym Phys 51:1125–1138. https://doi.org/10.1002/polb.23313

    Article  CAS  Google Scholar 

  259. Khajavi R, Atlasi A, Yazdanshenas M-E (2013) Alkali treatment of cotton yarns with ultrasonic bath. Text Res J 83:827–835. https://doi.org/10.1177/0040517512467077

    Article  CAS  Google Scholar 

  260. Vieira FS, Pasquini C (2014) Determination of cellulose crystallinity by terahertz-time domain spectroscopy. Anal Chem 86:3780–3786. https://doi.org/10.1021/ac4035746

    Article  CAS  PubMed  Google Scholar 

  261. Arık Kibar EA, Us F (2014) Evaluation of structural properties of cellulose ether-corn starch based biodegradable films. Int J Polym Mater Polym Biomater 63:342–351. https://doi.org/10.1080/00914037.2013.845190

    Article  CAS  Google Scholar 

  262. Poletto M, Ornaghi Júnior HL, Zattera AJ (2014) Native cellulose: Structure, characterization and thermal properties. Materials 7:6105–6119. https://doi.org/10.3390/ma7096105

    Article  PubMed  PubMed Central  Google Scholar 

  263. Sparla F, Falini G, Botticella E, Pirone C, Talamè V, Bovina R, Salvi S, Tuberosa R, Sestili F, Trost P (2014) New starch phenotypes produced by TILLING in barley. Plos One 9:e107779. https://doi.org/10.1371/journal.pone.0107779

  264. Ioelovich M (2014) Crystallinity and hydrophility of chitin and chitosan. Res Rev J Chem 3:7–14

    Google Scholar 

  265. Pramod K, Gangineni RB (2015) Influence of solvent evaporation rate on crystallization of poly(vinylidene fluoride) thin films. Bull Mater Sci 38:1093–1098. https://doi.org/10.1007/s12034-015-0894-z

    Article  CAS  Google Scholar 

  266. Ju X, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481. https://doi.org/10.1016/j.carbpol.2014.12.071

    Article  CAS  PubMed  Google Scholar 

  267. Rambo MKD, Ferreira MMC (2015) Determination of cellulose crystallinity of banana residues using near infrared spectroscopy and multivariate analysis. J Braz Chem Soc 26:1491–1499. https://doi.org/10.5935/0103-5053.20150118

    Article  CAS  Google Scholar 

  268. Kim MA, Choi SJ, Moon TW (2015) Digestibility of retrograded starches with A- and B-type crystalline structures. J Korean Soc Appl Biol Chem 58:487–490. https://doi.org/10.1007/s13765-015-0069-z

    Article  CAS  Google Scholar 

  269. Mariño M, da Silva LL, Durán N, Tasic L (2015) Enhanced materials from nature: Nanocellulose from citrus waste. Molecules 20:5908–5923. https://doi.org/10.3390/molecules20045908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Uzun I, Celik O (2015) Physicochemical characterization and the comparison of chitin and chitin modified with maleic anhydride. Orient J Chem 31:619–627. https://doi.org/10.13005/ojc/310202

  271. Hu G, Heitmann JA, Zhong B, Lucia LA, Argyropoulos DS (2015) Quantitative study of the interfacial adsorption of cellullase to cellulose. J Phys Chem C 119:14160–14166. https://doi.org/10.1021/acs.jpcc.5b02011

    Article  CAS  Google Scholar 

  272. Sadeghifar H, Venditti R, Jur J, Gorga RE, Pawlak JJ (2016) Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustain Chem Eng 5:625–631. https://doi.org/10.1021/acssuschemeng.6b02003

    Article  CAS  Google Scholar 

  273. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9. https://doi.org/10.1016/j.carbpol.2015.08.035

    Article  CAS  PubMed  Google Scholar 

  274. Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086. https://doi.org/10.1007/s10570-016-0881-6

    Article  CAS  Google Scholar 

  275. Ioelovich M (2016) Physicochemical methods for determination of cellulose crystallinity. ChemXpress 9:245–251

    CAS  Google Scholar 

  276. Enayati MS, Behzad T, Sajkiewicz P, Bagheri R, Ghasemi-Mobarakeh L, Łojkowski W, Pahlevanneshan Z, Ahmadi M (2016) Crystallinity study of electrospun poly (vinyl alcohol) nanofibers: effect of electrospinning, filler incorporation, and heat treatment. Iran Polym J 25:647–659. https://doi.org/10.1007/s13726-016-0455-3

    Article  CAS  Google Scholar 

  277. Skrockienė V, Žukienė K, Jankauskaitė V, Baltušnikas A, Petraitienė S (2016) Properties of mechanically recycled polycaprolactone-based thermoplastic polyurethane/polycaprolactone blends and their nanocomposites. J Elastomers Plast 48:266–286. https://doi.org/10.1177/0095244314568691

    Article  CAS  Google Scholar 

  278. Shen X, Hu W, Russell TP (2016) Measuring the degree of crystallinity in semicrystalline regioregular poly(3-hexylthiophene). Macromolecules 49:4501–4509. https://doi.org/10.1021/acs.macromol.6b00799

    Article  CAS  Google Scholar 

  279. Ahmad Z, Roziaizan NN, Rahman R, Mohamad AF, Ismail WINW (2016) Isolation and characterization of microcrystalline cellulose (MCC) from rice husk (RH). MATEC Web Conf 47:05013. https://doi.org/10.1051/matecconf/20164705013

    Article  CAS  Google Scholar 

  280. Safaai NSM, Ibrahim MI, Azizan A, Alwi H (2016) Variation of particle size and pretreatment temperature to the crystallinity of Leucaena Leucocephala. MATEC Web Conf 69:03005. https://doi.org/10.1051/matecconf/20166903005

    Article  CAS  Google Scholar 

  281. Feng B, Fang X, Wang H-X, Dong W, Li Y-C (2016) The effect of crystallinity on compressive properties of Al-PTFE. Polymers 8:356. https://doi.org/10.3390/polym8100356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Agarwal UP, Ralph SA, Baez C, Reiner RS, Verrill SP (2017) Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose 24:1971–1984. https://doi.org/10.1007/s10570-017-1259-0

    Article  CAS  Google Scholar 

  283. Hindi SSZ (2017) Some crystallographic properties of cellulose I as affected by cellulosic resource, smoothing, and computation methods. Int J Innov Res Sci Eng Technol 6:732–752. https://doi.org/10.15680/IJIRSET.2017.061127

  284. Singh D, Malik HK, Gupta CK, Singh V (2017) X-ray diffraction studies for identification of polyethylene terephthalate fibres. Indian J Sci Technol 10:1–4. https://doi.org/10.17485/ijst/2017/v10i17/110232

  285. Grace Annapoorani S, Divya S (2017) Investigating the characterization of fiber extracted from Wrightia tinctoria (Roxb.) R. BR. Int J Appl Res 3:731–736

    Google Scholar 

  286. Hindi SSZ (2017) Microcrystalline cellulose: The inexhaustible treasure for pharmaceutical industry. Nanosci Nanotechnol Res 4:17–24. https://doi.org/10.12691/nnr-4-1-3

  287. Quinayá DCP, D’almeida JRM (2017) Nondestructive characterization of epoxy matrix composites reinforced with Luffa lignocellulosic fibers. Rev Matér 22. https://doi.org/10.1590/S1517-707620170002.0181

  288. Ling Z, Chen S, Zhang X, Takabe K, Xu F (2017) Unraveling variations of crystalline cellulose induced by ionic liquid and their effects on enzymatic hydrolysis. Sci Rep 7:10230. https://doi.org/10.1038/s41598-017-09885-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Álvarez A, Cachero S, González-Sánchez C, Montejo-Bernardo J, Pizarro C, Bueno JL (2018) Novel method for holocellulose analysis of non-woody biomass wastes. Carbohydr Polym 189:250–256. https://doi.org/10.1016/j.carbpol.2018.02.043

    Article  CAS  PubMed  Google Scholar 

  290. Salcedo-Mendoza J, Paternina-Urzola S, Lujan-Rhenals D, Figueroa-Flórez J (2018) Enzymatic modification of cassava starch (Corpoica M-Tai) around the pasting temperature. DYNA 85:223–230. https://doi.org/10.15446/dyna.v85n204.66620

  291. Asano T, Sano S, Okabe T, Sano T, Itagaki H, Sawatari C, Mina MdF (2018) Modified Vonk’s method to determine crystallinity and crystal distortion in polymers. J Macromol Sci B Phys 57:317–332. https://doi.org/10.1080/00222348.2018.1459404

    Article  CAS  Google Scholar 

  292. Xu N, Ding E, Xue F (2018) Influence of particle size of isotactic polypropylene (iPP) on barrier property against agglomeration of homogenized microcrystalline cellulose (HMCC) in iPP/HMCC composites. J Polym Eng 38:213–222. https://doi.org/10.1515/polyeng-2017-0004

    Article  CAS  Google Scholar 

  293. Podgorbunskikh EM, Bychkov AL, Bulina NV, Lomovskii OI (2018) Disordering of the crystal structure of cellulose under mechanical activation. J Struct Chem 59:201–208. https://doi.org/10.1134/S0022476618010328

    Article  CAS  Google Scholar 

  294. Measurement of degree of crystallinity of cellulose nanofiber. LAAN-A-XR-E042, Shimadzu Corporation, 2018

  295. Polnaya FJ, Marseno DW, Cahyanto MN (2018) Physical properties and digestibility of resistant starch from phosphorylated sago starches. Pak J Nutr 17:199–206. https://doi.org/10.3923/pjn.2018.199.206

    Article  CAS  Google Scholar 

  296. Aksoy Ö, Uzun İ, Topal G, Ocak YS, Çelik Ö, Batibay D (2018) Synthesis, characterization, and Schottky diode applications of low-cost new chitin derivatives. Polym Bull 75:2265–2283. https://doi.org/10.1007/s00289-017-2151-7

    Article  CAS  Google Scholar 

  297. Ghajar MH, Mashhadi MM, Irannejad M, Jebril S, Yavuz M, Abdel-Rahman E (2018) Degree of crystallinity and β phase fraction of polyvinylidene fluoride nanocomposites containing ionic liquid and graphene/carbon nanotube. Polym Compos 39:E1208–E1215. https://doi.org/10.1002/pc.24737

    Article  CAS  Google Scholar 

  298. Liu Y, Chen J, Wu J, Luo S, Chen R, Liu C, Gilbert RG (2019) Modification of retrogradation property of rice starch by improved extrusion cooking technology. Carbohydr Polym 213:192–198. https://doi.org/10.1016/j.carbpol.2019.02.089

    Article  CAS  PubMed  Google Scholar 

  299. Tribulová T, Kačík F, Evtuguin DV, Čabalová I, Ďurkovič J (2019) The effects of transition metal sulfates on cellulose crystallinity during accelerated ageing of silver fir wood. Cellulose 26:2625–2638. https://doi.org/10.1007/s10570-018-2210-8

    Article  CAS  Google Scholar 

  300. Saurov SK, Mikhailidi A, Svedström K, Kotelnikova N (2019) Comparative study of powder celluloses and cellulose hydrogels by WAXS method. Impact of measurement technique and computation on variability of results. Cellul Chem Technol 53:885–896

    Article  CAS  Google Scholar 

  301. Smolyanskii AS, Arsentyev MA, Rashkovskii AYu, Politova ED (2019) Radiation-induced changes in the degree of crystallinity of powdered polytetrafluoroethylene. Crystallogr Rep 64:553–558. https://doi.org/10.1134/S1063774519040205

    Article  CAS  Google Scholar 

  302. Tarmia A, Mastouri A (2019) Changes in moisture exclusion efficiency and crystallinity of thermally modified wood with aging. Iforest 12:92–97. https://doi.org/10.3832/ifor2723-011

    Article  Google Scholar 

  303. Yatsenko DA, Medvedeva TB (2019) Estimating crystality index of microcrystalline cellulose using diffraction methods. J Struct Chem 60:1431–1436. https://doi.org/10.1134/S0022476619090075

    Article  Google Scholar 

  304. Carrión-Prieto P, Martín-Ramos P, Hernández-Navarro S, Sánchez-Sastre LF, Marcos-Robles JL, Martín-Gil J (2019) Crystallinity of cellulose microfibers derived from Cistus ladanifer and Erica arborea shrubs. Maderas-Cienc Tecnol 21:447–456. https://doi.org/10.4067/S0718-221X2019005000402

    Article  Google Scholar 

  305. Idenoue S, Oga Y, Hashimoto D, Yamamoto K, Kadokawa J-I (2019) Preparation of reswellable amorphous porous celluloses through hydrogelation from ionic liquid solutions. Materials 12:3249. https://doi.org/10.3390/ma12193249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Aksoy Ö, Uzun İ, Topal G, Ocak YS, Çelik Ö, Batibay D (2019) Schottky diodes based on the new chitin derivatives. Polym Sci Ser A+ 61:242–252. https://doi.org/10.1134/S0965545X19030027

  307. Aksoy Ö, Uzun İ, Topal G, Çelik Ö, Ocak YS, Batibay D (2019) New chitin derivatives and their Schottky diodes: Synthesis and characterization. Polym Polym Compos 27:476–487. https://doi.org/10.1177/0967391119847581

    Article  CAS  Google Scholar 

  308. Uzun İ, Orak İ, Karakaplan M, Karaer Yağmur H, Pınar Yalçın Ş, Akkılıç K (2020) Characterization of synthesized new chitin derivatives and Schottky diodes made using these derivatives. J Mater Sci Mater Electron 31:20090–20100. https://doi.org/10.1007/s10854-020-04530-0

    Article  CAS  Google Scholar 

  309. Yu S, Liu Z, Xu N, Chen J, Gao Y (2020) Influencing factors for determining the crystallinity of native cellulose by X-ray diffraction. Anal Sci 36:947–951. https://doi.org/10.2116/analsci.19P427

    Article  CAS  PubMed  Google Scholar 

  310. Ferreira JC, Evtuguin DV, Prates A (2020) Effect of cellulose structure on reactivity of eucalyptus acid sulphite dissolving pulp. Cellulose 27:4763–4772. https://doi.org/10.1007/s10570-020-03092-y

    Article  CAS  Google Scholar 

  311. Uzun İ, Aksoy Ö, Topal G, Çelik Ö, Ocak YS (2020) Evaluation of synthesized new chitin derivatives in Schottky diode constructions. Polym-Plast Technol Mater 59:1218–1232. https://doi.org/10.1080/25740881.2020.1725568

    Article  CAS  Google Scholar 

  312. Dome K, Podgorbunskikh E, Bychkov A, Lomovsky O (2020) Changes in the crystallinity degree of starch having different types of crystal structure after mechanical pretreatment. Polymers 12:641. https://doi.org/10.3390/polym12030641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Aziz SB, Marf AS, Dannoun EMA, Brza MA, Abdullah RM (2020) The Study of the degree of crystallinity, electrical equivalent circuit, and dielectric properties of polyvinyl alcohol (PVA)-based biopolymer electrolytes. Polymers 12:2184. https://doi.org/10.3390/polym12102184

    Article  CAS  Google Scholar 

  314. Lourenço A, Araújo S, Gominho J, Evtuguin D (2020) Cellulose structural changes during mild torrefaction of Eucalyptus wood. Polymers 12:2831. https://doi.org/10.3390/polym12122831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Doumeng M, Makhlouf L, Berthet F, Marsan O, Delbé K, Denape J, Chabert F (2021) A comparative study of the crystallinity of polyetheretherketone by using density, DSC, XRD, and Raman spectroscopy techniques. Polym Test 93:106878. https://doi.org/10.1016/j.polymertesting.2020.106878

  316. Uzun İ, Orak İ, Karaer Yağmur H, Karakaplan M, Yalman M (2021) Determination of electrical and photoelectrical properties of Schottky diodes made using new chitin derivatives synthesized as interface layer. Silicon 13:4703–4713. https://doi.org/10.1007/s12633-020-00779-6

    Article  CAS  Google Scholar 

  317. Shamshina JL, Acharya S, Rumi SS, Liyanage S, Parajuli P, Abidi N (2022) Cryogenic grinding of cotton fiber cellulose: The effect on physicochemical properties. Carbohydr Polym 289:119408. https://doi.org/10.1016/j.carbpol.2022.119408

Download references

Acknowledgements

I thank Jaana RASANEN for the reports and articles she sent me for Ant-Wuorinen method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İlhan Uzun.

Ethics declarations

Conflict of interests

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 871 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uzun, İ. Methods of determining the degree of crystallinity of polymers with X-ray diffraction: a review. J Polym Res 30, 394 (2023). https://doi.org/10.1007/s10965-023-03744-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03744-0

Keywords

Navigation