Skip to main content
Log in

Wettability studies of layer-by-layer films of Nafion/ Polyethylenemine/SiO2 nanoparticles

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biological systems with special wettability have attracted significant interest as superwetting surfaces. Recently, there has been a growing interest in unusual oleophobic/hydrophilic surfaces that exhibit high oil contact angle (OCA) and low water contact angle (WCA). Although these surfaces demonstrate potential applications in water/oil separation, detergent-free cleaning, and oil-repellent anti-fogging, their fabrication is challenging because of the lower surface tension of oil than that of water. In this study, we prepared layer-by-layer (LbL) films consist of Nafion (NAF), branched polyethyleneimine (PEI), and SiO2 nanoparticles, and studied the effect of the LbL assembly condition on film growth and water/oil wettability. Typical WCA and OCA values of NAF/PEI film were ~128° and ~21°, respectively. The WCA and OCA changed as the SiO2 nanoparticles were added and the films were treated with perfluorooctane sulfonate. When the WCA and OCA difference was the smallest, the WCA and OCA values of the NAF/PEI/ SiO2 film were 121° and 91°, respectively. Furthermore, we prepared two-layer LbL films by coating NAF/PEI/SiO2 films onto porous LbL films. As the PFOS-terminated NAF/PEI/SiO2 film were deposited, the WCA decreased from 119 to 78°, and the OCA was fairly constant at 108°, showing a reversal of the WCA and OCA values. We expect that this study will provide a better understanding of the fabrication of LbL-assembled oleophobic/hydrophilic surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Su B, Tian Y, Jiang L (2016) Bioinspired interfaces with superwettability: From materials to chemistry. J Am Chem Soc 138(6):1727–1748. https://doi.org/10.1021/jacs.5b12728

    Article  CAS  PubMed  Google Scholar 

  2. Gu ZZ, Uetsuka H, Takahashi K, Nakajima R, Onishi H, Fujishima A, Sato O (2003) Structural color and the lotus effect. Angew Chem Int Ed Engl 42(8):894–897. https://doi.org/10.1002/anie.200390235

  3. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L (2008) Petal effect: A superhydrophobic state with high adhesive force. Langmuir 24(8):4114–4119. https://doi.org/10.1021/la703821h

    Article  CAS  PubMed  Google Scholar 

  4. Nosonovsky M (2011) Slippery when wetted. Nature 477(7365):412–413. https://doi.org/10.1038/477412a

    Article  CAS  PubMed  Google Scholar 

  5. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L (2002) Super-hydrophobic surfaces: From natural to artificial. Adv Mater 14(24):1857–1860. https://doi.org/10.1002/adma.200290020

    Article  CAS  Google Scholar 

  6. Si Y, Guo Z (2015) Superhydrophobic nanocoatings: From materials to fabrications and to applications. Nanoscale 7(14):5922–5946. https://doi.org/10.1039/C4NR07554D

  7. Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 7(21):9804–9828. https://doi.org/10.1039/C1SM05849E

    Article  CAS  Google Scholar 

  8. Yong J, Chen F, Yang Q, Juo J, Hou X (2017) Superoleophobic surfaces. Chem Soc Rev 46(14):4168–4217. https://doi.org/10.1039/C6CS00751A

    Article  CAS  PubMed  Google Scholar 

  9. Nishimoto S, Bhushan B (2013) Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Adv 3(3):671–690. https://doi.org/10.1039/C2RA21260A

    Article  CAS  Google Scholar 

  10. Zhu L, Xue J, Wang Y, Chen Q, Ding J, Wang Q (2013) Ice-phobic coatings based on silicon-oil-infused polydimethylsiloxane. ACS Appl Mater Inter 5(10):4053–4062. https://doi.org/10.1021/am400704z

    Article  CAS  Google Scholar 

  11. Zhang W, Zhu Y, Liu X, Wnag D, Li J, Jiang L, Jin J (2014) Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angew Chem Int Ed Engl 53(3):856–860. https://doi.org/10.1002/anie.201308183

    Article  CAS  PubMed  Google Scholar 

  12. Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477(7365):443–447. https://doi.org/10.1038/nature10447

    Article  CAS  PubMed  Google Scholar 

  13. Liravi M, Pakzad H, Moosavi A, Nouri-Borujerdi A (2020) A comprehensive review on recent advances in superhydrophobic surfaces and their applications for drag reduction. Prog Org Coat 140:105537. https://doi.org/10.1016/j.porgcoat.2019.105537

  14. Xue CH, Li YR, Zhang P, Ma JZ, Jia ST (2014) Washable and wear-resistant superhydrophobic surfaces with self-cleaning property by chemical etching of fibers and hydrophobization. ACS Appl Mater Inter 6(13):10153–10161. https://doi.org/10.1021/am501371b

    Article  CAS  Google Scholar 

  15. Adera S, Raj R, Enright R, Wang EN (2013) Non-wetting droplets on hot superhydrophilic surfaces. Nature Commun 4(1):2518. https://doi.org/10.1038/ncomms3518

    Article  CAS  Google Scholar 

  16. Ganesh VA, Nair AS, Raut HK, Tan TTY, He C, Ramakrishna S, Xu J (2012) Superhydrophobic fluorinated POSS–PVDF-HFP nanocomposite coating on glass by electrospinning. J Mater Chem 22(35):18479–18485. https://doi.org/10.1039/C2JM33088A

    Article  CAS  Google Scholar 

  17. Shirtcliffe NJ, McHale G, Newton MI, Perry CC (2003) Intrinsically superhydrophobic organosilica sol−gel foams. Langmuir 19(14):5626–5631. https://doi.org/10.1021/la034204f

  18. She Z, Li Q, Wang Z, Tan C, Zhou J, Li L (2014) Highly anticorrosion, self-cleaning superhydrophobic ni–co surface fabricated on AZ91D magnesium alloy. Surf Coat Technol 251:7–14. https://doi.org/10.1016/j.surfcoat.2014.03.060

    Article  CAS  Google Scholar 

  19. Pakdel A, Bando Y, Golberg D (2013) Morphology-driven nonwettability of nanostructured bn surfaces. Langmuir 29(24):7529–7533. https://doi.org/10.1021/la4004356

    Article  CAS  PubMed  Google Scholar 

  20. Huang X, Zacharia NS (2015) Functional polyelectrolyte multilayer assemblies for surfaces with controlled wetting behavior. J Appl Polym Sci 132(45). https://doi.org/10.1002/app.42767

  21. Xiao FX, Pagliaro M, Xu YJ, Liu B (2016) Layer-by-layer assembly of versatile nanoarchitectures with diverse dimensionality: A new perspective for rational construction of multilayer assemblies. Chem Soc Rev 45(11):3088–3121. https://doi.org/10.1039/C5CS00781J

    Article  CAS  PubMed  Google Scholar 

  22. Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F (2016) Innovation in layer-by-layer assembly. Chem Rev 116(23):14828–14867. https://doi.org/10.1021/acs.chemrev.6b00627

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y, Xu Z, Wang X, Lin T (2012) Photoreactive azido-containing silica nanoparticle/polycation multilayers: Durable superhydrophobic coating on cotton fabrics. Langmuir 28(15):6328–6335. https://doi.org/10.1021/la300281q

    Article  CAS  PubMed  Google Scholar 

  24. Guo XJ, Xue CH, Li M, Li X, Ma JZ (2017) Fabrication of robust, superhydrophobic, electrically conductive and UV-blocking fabrics via layer-by-layer assembly of carbon nanotubes. RSC Adv 7(41):25560–25565. https://doi.org/10.1039/C7RA02111A

    Article  CAS  Google Scholar 

  25. Soeno T, Inokuchi K, Shiratori S (2004) Ultra-water-repellent surface: Fabrication of complicated structure of SiO2 nanoparticles by electrostatic self-assembled films. Appl Surf Sci 237(1):539–543. https://doi.org/10.1016/j.apsusc.2004.06.041

    Article  CAS  Google Scholar 

  26. Yu J, Han S, Hong JS, Sanyal O, Lee I (2016) Synchronous generation of nano- and microscaled hierarchical porous polyelectrolyte multilayers for superwettable surfaces. Langmuir 32(33):8494–8500. https://doi.org/10.1021/acs.langmuir.6b01798

    Article  CAS  PubMed  Google Scholar 

  27. Zhai L, Cebeci FÇ, Cohen RE, Rubner MF (2004) Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett 4(7):1349–1353. https://doi.org/10.1021/nl049463j

    Article  CAS  Google Scholar 

  28. Sung C, Choi S, Kim J (2020) Surface morphologies and wetting properties of layer-by-layer assembled films of polyelectrolytes with bimodal molecular weight distribution. Korean J Chem Eng 37(7):1266–1273. https://doi.org/10.1007/s11814-020-0545-y

  29. Sung C, Heo Y (2021) Porous layer-by-layer films assembled using polyelectrolyte blend to control wetting properties. Polymers 13(13):2116. https://doi.org/10.3390/polym13132116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Chen S, Wu M, Sun J (2014) All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings. Adv Mater 26(20):3344–3348. https://doi.org/10.1002/adma.201306136

    Article  CAS  PubMed  Google Scholar 

  31. Wu M, An N, Li Y, Sun J (2016) Layer-by-layer assembly of fluorine-free polyelectrolyte–surfactant complexes for the fabrication of self-healing superhydrophobic films. Langmuir 32(47):12361–12369. https://doi.org/10.1021/acs.langmuir.6b02607

    Article  CAS  PubMed  Google Scholar 

  32. Cebeci FÇ, Wu Z, Zhai L, Cohen RE, Rubner MF (2006) Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir 22(6):2856–2862. https://doi.org/10.1021/la053182p

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, He J (2007) Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres. J Colloid Interf Sci 314(1):341–345. https://doi.org/10.1016/j.jcis.2007.05.011

    Article  CAS  Google Scholar 

  34. Yang J, Song H, Chen B, Chen B, Tang H, Li C (2014) Fabrication of superoleophobic surfaces with controllable liquid adhesion from polyelectrolyte multilayer film. RSC Adv 4(27):14227–14232. https://doi.org/10.1039/C4RA00524D

    Article  CAS  Google Scholar 

  35. Brown PS, Bhushan B (2015) Mechanically durable, superomniphobic coatings prepared by layer-by-layer technique for self-cleaning and anti-smudge. J Colloid Interf Sci 456:210–218. https://doi.org/10.1016/j.jcis.2015.06.030

    Article  CAS  Google Scholar 

  36. Wang Y, Gong X (2017) Special oleophobic and hydrophilic surfaces: Approaches, mechanisms, and applications. J Mater Chem A 5(8):3759–3773. https://doi.org/10.1039/C6TA10474F

    Article  CAS  Google Scholar 

  37. Zhu H, Guo Z (2016) Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces. J Bionic Eng 13(1):1–29. https://doi.org/10.1016/S1672-6529(14)60156-6

    Article  Google Scholar 

  38. Howarter JA, Youngblood JP (2007) Self-cleaning and anti-fog surfaces via stimuli-responsive polymer brushes. Adv Mater 19(22):3838–3843. https://doi.org/10.1002/adma.200700156

    Article  CAS  Google Scholar 

  39. Li L, Wang Y, Gallaschun C, Risch T, Sun J (2012) Why can a nanometer-thick polymer coated surface be more wettable to water than to oil? J Mater Chem 22(33):16719–16722. https://doi.org/10.1039/C2JM32580B

    Article  CAS  Google Scholar 

  40. Wang Y, Knapp J, Legere A, Raney J, Li L (2015) Effect of end-groups on simultaneous oleophobicity/hydrophilicity and anti-fogging performance of nanometer-thick perfluoropolyethers (PFPEs). RSC Adv 5(39):30570–30576. https://doi.org/10.1039/C5RA04483A

    Article  CAS  Google Scholar 

  41. Saito T, Tsushima Y, Sawada H (2015) Facile creation of superoleophobic and superhydrophilic surface by using fluoroalkyl end-capped vinyltrimethoxysilane oligomer/calcium silicide nanocomposites—development of these nanocomposites to environmental cyclical type-fluorine recycle through formation of calcium fluoride. Colloid Polym Sci 293(1):65–73. https://doi.org/10.1007/s00396-014-3387-5

    Article  CAS  Google Scholar 

  42. Sawada H, Yoshioka H, Kawase T, Takahasi H, Abe A, Ohashi R (2005) Synthesis and applications of a variety of fluoroalkyl end-capped oligomers/silica gel polymer hybrids. J Appl Polym Sci 98(1):169–177. https://doi.org/10.1002/app.22034

    Article  CAS  Google Scholar 

  43. Kota AK, Kwon G, Choi W, Choi W, Mabry JM, Tuteja A (2012) Hygro-responsive membranes for effective oil–water separation. Nature Commun 3(1):1025. https://doi.org/10.1038/ncomms2027

    Article  CAS  Google Scholar 

  44. Yang J, Zhang Z, Xu X, Zhu X, Men X, Zhou X (2012) Superhydrophilic–superoleophobic coatings. J Mater Chem 22(7):2834–2837. https://doi.org/10.1039/C2JM15987B

    Article  CAS  Google Scholar 

  45. Ritchie AW, Cox HJ, Barrientos-Palomo SN, Sharples GJ, Badyal JPS (2019) Bioinspired multifunctional polymer–nanoparticle–surfactant complex nanocomposite surfaces for antibacterial oil–water separation. Colloids Surf A: Physicochem Eng Asp 560:352–359. https://doi.org/10.1016/j.colsurfa.2018.10.030

    Article  CAS  Google Scholar 

  46. Li F, Bhushan B, Pan Y, Zhao X (2019) Bioinspired superoleophobic/superhydrophilic functionalized cotton for efficient separation of immiscible oil-water mixtures and oil-water emulsions. J Colloid Interf Sci 548:123–130. https://doi.org/10.1016/j.jcis.2019.04.031

    Article  CAS  Google Scholar 

  47. Yang J, Song H, Yan X, Tang H, Li C (2014) Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose 21(3):1851–1857. https://doi.org/10.1007/s10570-014-0244-0

    Article  CAS  Google Scholar 

  48. Brown PS, Bhushan B (2015) Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation. Sci Rep 5(1):8701. https://doi.org/10.1038/srep08701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Peng S, Wang Y, Lan Y, Shi X, Zhang H, Qu H, Xu J (2020) Rational design of multifunctional superoleophobic/superhydrophilic, photocatalytic, and fire-retardant polyethylene terephthalate fabrics through layer-by-layer technique. Compos B Eng 200:108264. https://doi.org/10.1016/j.compositesb.2020.108264

  50. Sawada H, Ikematsu Y, Kawase T, Hayakawa Y (1996) Synthesis and surface properties of novel fluoroalkylated flip-flop-type silane coupling agents. Langmuir 12(15):3529–3530. https://doi.org/10.1021/la951041p

    Article  CAS  Google Scholar 

  51. Pan Y, Huang S, Li F, Zhao X, Wang W (2018) Coexistence of superhydrophilicity and superoleophobicity: Theory, experiments and applications in oil/water separation. J Mater Chem A 6(31):15057–15063. https://doi.org/10.1039/C8TA04725A

    Article  CAS  Google Scholar 

  52. Huang X, Chrisman JD, Zacharia NS (2013) Omniphobic slippery coatings based on lubricant-infused porous polyelectrolyte multilayers. ACS Macro Lett 2(9):826–829. https://doi.org/10.1021/mz400387w

    Article  CAS  PubMed  Google Scholar 

  53. Friedman AK, Shi W, Losovyj Y, Siedle AR, Baker LA (2018) Mapping microscale chemical heterogeneity in nafion membranes with x-ray photoelectron spectroscopy. J Electrochem Soc 165(11):H733. https://doi.org/10.1149/2.0771811jes

    Article  CAS  Google Scholar 

  54. Jensen DS, Kanyal SS, Madaan N et al (2013) Silicon (100)/sio2 by xps. Surf Sci Spectra 20(1):36–42. https://doi.org/10.1116/11.20121101

    Article  CAS  Google Scholar 

  55. Gu L, Xie MY, Jin Y et al (2019) Construction of antifouling membrane surfaces through layer-by-layer self-assembly of lignosulfonate and polyethyleneimine. Polymers 11(11):1782. https://doi.org/10.3390/polym11111782

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choonghyun Sung.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, C., Kang, M. Wettability studies of layer-by-layer films of Nafion/ Polyethylenemine/SiO2 nanoparticles. J Polym Res 30, 323 (2023). https://doi.org/10.1007/s10965-023-03719-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03719-1

Keywords

Navigation