Skip to main content
Log in

Combination of expansible graphite and bismuth oxide for simultaneously improving the thermal behavior, fire performance and mechanical property of intumescent flame-retardant epoxy resins

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

For effectively balancing the mechanical properties and flame resistance of intumescent flame-retardant epoxy resin (EP), the flame-retardant EPs were prepared to explore the synergistic effect of expansible graphite (EG) and bismuth oxide (Bi2O3) on traditional intumescent flame retardant (IFR). The results demonstrate that IFR-EG-Bi2O3 system has better flame resistance effect than IFR-EG or IFR-Bi2O3 system. Especially, 27 wt% IFR, 1.5 wt% EG and 1.5 wt% Bi2O3 endows EP with a limiting oxygen index (LOI) value of 28.7% and a UL94 V−0 rating, while 30 wt% IFR only imparts a LOI of 26.1% and a UL94 V−2 rating to EP. Moreover, the total heat release (THR) and total smoke release (TSR) of EP/IFR-EG-Bi2O3 composite are decreased by 18.3% and 45.0% compared to EP/IFR system. The enhanced thermal stability of EP/IFR-EG-Bi2O3 is attributed to the combination of EG and Bi2O3 that favors the retention of large amounts of aromatic structures in condensed phase. Meanwhile, replacing 3.0 wt% IFR with EG and Bi2O3 can effectively reduce the negative impact on EP matrix and achieve a better balance between mechanical properties and flame retardancy of intumescent flame-retardant EP due to the good interfacial adhesion between EG and EP and the crosslinked points formed by Bi2O3 and EP molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yazdanfar A, Shahrajabian H (2021) Experimental investigation of multi-wall carbon nanotube added epoxy resin on the EDM performance of epoxy/carbon fiber/MWCNT hybrid composites. Int J Adv Manuf Tech 116:1801–1817. https://doi.org/10.1007/s00170-021-07593-3

    Article  Google Scholar 

  2. Jiang YP, Liu L, He GH et al (2023) A crosslinked organic/inorganic functionalized graphene containing hybrid engineering to improve the flame retardancy of epoxy resin. J Polym Res 30:144. https://doi.org/10.1007/s10965-023-03500-4

    Article  CAS  Google Scholar 

  3. Yang QS, Wang J, Yang S et al (2023) A phosphoruscontaining aliphatic amine curing agent towards intrinsic flameretardant and smokesuppressive epoxy resins. J Polym Res 30:51. https://doi.org/10.1007/s10965-023-03437-8

    Article  CAS  Google Scholar 

  4. Yi L, Long MT, Yan L et al (2023) A facile strategy to construct multifunctional microencapsulated urea ammonium polyphosphate for epoxy resins towards satisfied fire safety, thermal stability and compatibility. J Appl Polym Sci 140:e53675. https://doi.org/10.1002/app.53675

    Article  CAS  Google Scholar 

  5. Xu YX, Nie SB, Dai GL et al (2022) Effect of phosphorus-modified nickel phyllosilicates on the thermal stability, flame retardancy and mechanical property of epoxy composites. J Polym Res 29:10. https://doi.org/10.1007/s10965-021-02843-0

    Article  CAS  Google Scholar 

  6. Wang FY, Liao JH, Long MT et al (2023) Facile synthesis of reduced-graphene-oxide-modified ammonium polyphosphate to enhance the flame retardancy, smoke release suppression, and Mechanical Properties of Epoxy Resin. Polymers-Basel 15:1304. https://doi.org/10.3390/polym15051304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu ZS, Chu ZY, Yan L et al (2019) Effect of chicken eggshell on the flame-retardant and smoke suppression properties of an epoxy-based traditional APP-PER-MEL system. Polym Compos 40:2712–2723. https://doi.org/10.1002/pc.25077

    Article  CAS  Google Scholar 

  8. Bai G, Guo CG, Li LP (2014) Synergistic effect of intumescent flame retardant and expandable graphite on mechanical and flame-retardant properties of wood flour-polypropylene composites. Constr Build Mater 50:148–153. https://doi.org/10.1016/j.conbuildmat.2013.09.028

    Article  Google Scholar 

  9. Chen C, Zhou Y, He WD et al (2020) Flammability, thermal stability, and mechanical properties of ethylene-propylene-diene monomer/polypropylene composites filled with intumescent flame retardant and inorganic synergists. J Appl Polym Sci 138:e50116. https://doi.org/10.1002/app.50116

    Article  CAS  Google Scholar 

  10. Zhang JF, Liang ZL, Liu JX et al (2022) Preparation and performance analysis of palygorskite reinforced silicone-acrylic emulsion-based intumescent coating. Prog Org Coat 166:106801. https://doi.org/10.1016/j.porgcoat.2022.106801

    Article  CAS  Google Scholar 

  11. Yan L, Xu ZS, Wang XH et al (2018) Preparation of a novel mono-component intumescent flame retardant for enhancing the flame retardancy and smoke suppression properties of epoxy resin. J Therm Anal Calorim 134:1505–1519. https://doi.org/10.1007/s10973-018-7810-x

    Article  CAS  Google Scholar 

  12. Lv P, Wang Z, Hu Y et al (2008) Effect of metallic oxides in polypropylene composites containing melamine phosphate and pentaerythritol. Plast Rubber Compos 37:311–318. https://doi.org/10.1179/174328908X314325

    Article  CAS  Google Scholar 

  13. Xu ZS, Jia HY, Yan L et al (2020) Synergistic effect of bismuth oxide and mono-component intumescent flame retardant on the flammability and smoke suppression properties of epoxy resins. Polym Adv Technol 31:25–35. https://doi.org/10.1002/pat.4744

    Article  CAS  Google Scholar 

  14. Wu N, Yang RJ, Hao JW et al (2009) Synergistic effect of metal oxides on intumescent flame-retardant PP systems. Acta Polym Sin 12:1205–1210

    Article  Google Scholar 

  15. Jagdale P, Salimpour S, Islam MH et al (2018) Flame retardant effect of nano fillers on polydimethylsiloxane composites. J Nanosci Nanotechno 18:1468–1473. https://doi.org/10.1166/jnn.2018.15251

    Article  CAS  Google Scholar 

  16. Xu ZS, Jia HY, Yan L et al (2020) Synergistic effects of organically modified montmorillonite in combination with metal oxides on the fire safety enhancement of intumescent flame-retarded epoxy resins. J Vinyl Addit Techn 27:161–173. https://doi.org/10.1002/vnl.21793

    Article  CAS  Google Scholar 

  17. Yuan BH, Hu Y, Chen XF et al (2017) Dual modification of graphene by polymeric flame retardant and Ni(OH)2 nanosheets for improving flame retardancy of polypropylene. Compos Part A-Appl S 100:106–117. https://doi.org/10.1016/j.compositesa.2017.04.012

    Article  CAS  Google Scholar 

  18. Yuan BH, Wang Y, Chen GQ et al (2021) Nacre-like graphene oxide paper bonded with boric acid for fire early-warning sensor. J Hazard Mater 403:123645. https://doi.org/10.1016/j.jhazmat.2020.123645

    Article  CAS  PubMed  Google Scholar 

  19. Si MM, Feng J, Hao JW et al (2014) Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly (ethylene terephthalate). Polym Degrad Stabil 100:70–78. https://doi.org/10.1016/j.polymdegradstab.2013.12.023

    Article  CAS  Google Scholar 

  20. Yan L, Xu ZS, Jia HY et al (2020) Combination effect of organically modified montmorillonite and nano-silica on reducing the fire hazards of intumescent flame-retarded epoxy resins. J Vinyl Addit Techn 26:490–501. https://doi.org/10.1002/vnl.21764

    Article  CAS  Google Scholar 

  21. Yi L, Yang Q, Yan L et al (2022) Facile fabrication of multifunctional transparent fire-retardant coatings with excellent fire resistance, antibacterial and anti-aging properties. Prog Org Coat 169:106925. https://doi.org/10.1016/j.porgcoat.2022.106925

    Article  CAS  Google Scholar 

  22. Xu ZS, Deng N, Yan L et al (2018) Functionalized multiwalled carbon nanotubes with monocomponent intumescent flame retardant for reducing the flammability and smoke emission characteristics of epoxy resins. Polym Adv Technol 29:3002–3013. https://doi.org/10.1002/pat.4420

    Article  CAS  Google Scholar 

  23. Wang FY, Liao JH, Yan L et al (2021) Fabrication of diaminodiphenylmethane modified ammonium polyphosphate to remarkably reduce the fire hazard of epoxy resins. Polymers-Basel 13:3221. https://doi.org/10.3390/polym13193221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang AH, Deng C, Chen H et al (2017) A novel Schiff-base polyphosphate ester: highly-efficient flame retardant for polyurethane elastomer. Polym Degrad stabil 144:70–82. https://doi.org/10.1016/j.polymdegradstab.2017.08.007

    Article  CAS  Google Scholar 

  25. Wang JS, Xue L, Zhao B et al (2019) Flame retardancy, fire behavior, and flame retardant mechanism of intumescent flame retardant EPDM containing ammonium polyphosphate/pentaerythrotol and expandable graphite. Materlals 12:4035. https://doi.org/10.3390/ma12244035

    Article  CAS  Google Scholar 

  26. Mamani A, Ebrahimi M, Ataeefard M (2017) A study on mechanical, thermal and flame retardant properties of epoxy/expandable graphite composites. Pigm Resin Technol 46:131–138. https://doi.org/10.1108/PRT-11-2015-0112

    Article  CAS  Google Scholar 

  27. Li WB, Peng M, Zhao XM et al (2022) Properties of Bi2O3/epoxy resin-coated composites for protection against gamma rays. J Ind Text 51:7545S-7568S. https://doi.org/10.1177/15280837211051102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work was financially supported by the National Natural Science Foundation of China (Grant No.52276143), the Key Research and Development Program of Hunan Province (Grant No. 2021SK2054), the Science and Technology Research and Development Program Project of China railway group limited (Grant No. 2021-Special-02), and the funding of Hunan Tieyuan Civil Engineering Testing Co., Ltd (Grant No. HNTY2022K07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yan.

Ethics declarations

Competing interest

Authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 9399 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, L., Long, M., Yan, L. et al. Combination of expansible graphite and bismuth oxide for simultaneously improving the thermal behavior, fire performance and mechanical property of intumescent flame-retardant epoxy resins. J Polym Res 30, 335 (2023). https://doi.org/10.1007/s10965-023-03718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03718-2

Keywords

Navigation