Skip to main content
Log in

Preparation and properties of Na2HPO4·12H2O-expanded pertile shape stable phase change material for building field

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, inorganic hydrated salt Na2HPO4·12H2O with a high enthalpy value and Na2SiO3·9H2O were respectively selected as phase change material (PCM) and nucleating agent to obtain a modified PCM (modified-PCM). Then, by introducing the modified-PCM into expanded perlite (EP), a shape stable phase change material (DHPD-EP SSPCM) was prepared. Combined with the results of the leakage test and DSC, it was determined that the best adsorption rate of EP for the modified-PCM was 58wt %. SEM and N2 adsorption–desorption experiments showed that modified-PCM was adsorbed in the surfaces and pores of EP. FT-IR, and XRD verified that the adsorption of EP for the modified-PCM was physical. The thermal performances of DHPD-EP SSPCM were also explored. Its enthalpy value, phase transition temperature, supercooling degree and thermal conductivity coefficient were 181.51 kJ/kg, 33.6 ℃, 5.8 ℃ and 0.121 W/ (m·K), respectively. The heating–cooling experiment has confirmed the good thermal reliability of SSPCM, which has laid a foundation for the application of SSPCM in building enclosures in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be available on the request.

References

  1. Liang J, Zhang X, Ji J (2021) Hygroscopic phase change composite material——A review. Journal of Energy Storage 36. https://doi.org/10.1016/j.est.2021.102395

  2. Zhu N, Li S, Hu P, Wei S, Deng R, Lei F (2018) A review on applications of shape-stabilized phase change materials embedded in building enclosure in recent ten years. Sustain Cities Soc 43:251–264. https://doi.org/10.1016/j.scs.2018.08.028

    Article  Google Scholar 

  3. Li C, Wang M, Xie B, Ma H, Chen J (2020) Enhanced properties of diatomite-based composite phase change materials for thermal energy storage. Renew Energy 147:265–274. https://doi.org/10.1016/j.renene.2019.09.001

    Article  CAS  Google Scholar 

  4. Memon SA (2014) Phase change materials integrated in building walls: A state of the art review. Renew Sustain Energy Rev 31:870–906. https://doi.org/10.1016/j.rser.2013.12.042

    Article  Google Scholar 

  5. Zhang XX, Li X, Zhou Y, Hai CX, Shen Y, Ren XF, Zeng JB (2018) Calcium chloride hexahydrate/diatomite/paraffin as composite shape-stabilized phase-change material for thermal energy storage. Energy Fuels 32:916–921. https://doi.org/10.1021/acs.energyfuels.7b02866

    Article  CAS  Google Scholar 

  6. Zou T, Xu T, Cui H, Tao H, Xu H, Zhou X, Chen Q, Chen J, Huang G, Sun Y (2021) Super absorbent polymer as support for shape-stabilized composite phase change material containing Na2HPO4·12H2O–K2HPO4·3H2O eutectic hydrated salt. Solar Energy Mater Solar Cells 231. https://doi.org/10.1016/j.solmat.2021.111334

  7. Huang X, Chen X, Li A, Atinafu D, Gao H, Dong W, Wang G (2019) Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem Eng J 356:641–661. https://doi.org/10.1016/j.cej.2018.09.013

    Article  CAS  Google Scholar 

  8. Saeed RM, Schlegel JP, Castano C, Sawafta R, Kuturu V (2017) Preparation and thermal performance of methyl palmitate and lauric acid eutectic mixture as phase change material (PCM). J Energy Storage 13:418–424. https://doi.org/10.1016/j.est.2017.08.005

    Article  Google Scholar 

  9. Wang CL, Yeh KL, Chen CW, Lee Y, Lee HL, Lee T (2017) A quick-fix design of phase change material by particle blending and spherical agglomeration. Appl Energy 191:239–250. https://doi.org/10.1016/j.apenergy.2017.01.078

    Article  CAS  Google Scholar 

  10. Zou T, Fu W, Liang X, Wang S, Gao X, Zhang Z, Fang Y (2020) Hydrophilic modification of expanded graphite to develop form-stable composite phase change material based on modified CaCl2·6H2O. Energy 190. https://doi.org/10.1016/j.energy.2019.116473

  11. Khudhair AM, Farid MM (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers Manag 45:263–275. https://doi.org/10.1016/s0196-8904(03)00131-6

    Article  CAS  Google Scholar 

  12. Umair MM, Zhang Y, Iqbal K, Zhang S, Tang B (2019) Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review. Appl Energy 235:846–873. https://doi.org/10.1016/j.apenergy.2018.11.017

    Article  CAS  Google Scholar 

  13. Zhang C, Zhang Z, Ye R, Gao X, Ling Z (2018) Characterization of MgCl(2).6H(2)O-based eutectic/expanded perlite composite phase change material with low thermal conductivity. Materials (Basel) 11. https://doi.org/10.3390/ma11122369

  14. Xie N, Huang Z, Luo Z, Gao X, Fang Y, Zhang Z (2017) Inorganic salt hydrate for thermal energy storage. Appl Sci 7. https://doi.org/10.3390/app7121317

  15. Nikolić R, Nešković O, Kelić K (1984) The thermal-conductivities of some low melting materials relevant to energy-storage. 1.The Boris Kidrič Institute of Nuclear Sciences, Belgrade, Yugoslavia 34:199–203. https://doi.org/10.1007/bf00616920

  16. Yu Z-T, Fang X, Fan L-W, Wang X, Xiao Y-Q, Zeng Y, Xu X, Hu Y-C, Cen K-F (2013) Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon 53:277–285. https://doi.org/10.1016/j.carbon.2012.10.059

    Article  CAS  Google Scholar 

  17. Peng S, Huang J, Wang T, Zhu P (2019) Effect of fumed silica additive on supercooling, thermal reliability and thermal stability of Na2HPO4·12H2O as inorganic PCM. Thermochim Acta 675:1–8. https://doi.org/10.1016/j.tca.2019.02.013

    Article  CAS  Google Scholar 

  18. Huang J, Dai J, Peng S, Wang T, Hong S (2019) Modification on hydrated salt-based phase change composites with carbon fillers for electronic thermal management. Int J Energy Res 43:3550–3560. https://doi.org/10.1002/er.4502

    Article  CAS  Google Scholar 

  19. Mohamed SA, Al-Sulaiman FA, Ibrahim NI, Zahir MH, Al-Ahmed A, Saidur R, Yılbaş BS, Sahin AZ (2017) A review on current status and challenges of inorganic phase change materials for thermal energy storage systems. Renew Sustain Energy Rev 70:1072–1089. https://doi.org/10.1016/j.rser.2016.12.012

    Article  CAS  Google Scholar 

  20. Wang W, Yi L, Zheng Y, Lu J, Jiang A, Wang D (2023) Photochromic and mechanochromic cotton fabric for flexible rewritable media based on acrylate latex with spiropyran cross-linker. Compos Commun 37. https://doi.org/10.1016/j.coco.2022.101455

  21. Que L, Zhang X (2022) Experimental investigations on the thermal performance and phase change hysteresis of composite phase change material Na2HPO4·12H2O/SiO2. J Energy Storage 54. https://doi.org/10.1016/j.est.2022.105360

  22. Xin Y, Li J, Huang K, Liu L, Yang R (2022) Thermal characteristics enhancement of Na2HPO4⋅12H2O/expanded graphite form-stable composite phase change material by the cationic surfactant modification. J Energy Storage 54. https://doi.org/10.1016/j.est.2022.105399

  23. Qian T, Li J, Min X, Deng Y, Guan W, Ning L (2015) Diatomite: A promising natural candidate as carrier material for low, middle and high temperature phase change material. Energy Convers Mana 98:34–45. https://doi.org/10.1016/j.enconman.2015.03.071

    Article  CAS  Google Scholar 

  24. Lv P, Ding M, Liu C, Rao Z (2019) Experimental investigation on thermal properties and thermal performance enhancement of octadecanol/expanded perlite form stable phase change materials for efficient thermal energy storage. Renew Energy 131:911–922. https://doi.org/10.1016/j.renene.2018.07.102

    Article  CAS  Google Scholar 

  25. Zuo X, Zhao X, Li J, Hu Y, Yang H, Chen D (2020) Enhanced thermal conductivity of form-stable composite phase-change materials with graphite hybridizing expanded perlite/paraffin. Solar Energy 209:85–95. https://doi.org/10.1016/j.solener.2020.08.082

    Article  CAS  Google Scholar 

  26. Fu L, Wang Q, Ye R, Fang X, Zhang Z (2017) A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation. Renew Energy 114:733–743. https://doi.org/10.1016/j.renene.2017.07.091

    Article  CAS  Google Scholar 

  27. Lu Z, Zhang J, Sun G, Xu B, Li Z, Gong C (2015) Effects of the form-stable expanded perlite/paraffin composite on cement manufactured by extrusion technique. Energy 82:43–53. https://doi.org/10.1016/j.energy.2014.12.043

    Article  CAS  Google Scholar 

  28. Wang P, Feng X, Zhu Y, Lian J, Zhang H, Fang M (2020) Preparation and thermal properties of colloidal mixtures of capric acid and Na2HPO4·12H2O as a phase change material for energy storage. Solar Energy Mater Solar Cells 215. https://doi.org/10.1016/j.solmat.2020.110636

  29. Huang K, Li J, Luan X, Liu L, Yang Z, Wang C (2020) Effect of graphene oxide on phase change materials based on disodium hydrogen phosphate dodecahydrate for thermal storage. ACS Omega 5:15210–15217. https://doi.org/10.1021/acsomega.0c01184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou T, Fu W, Liang X, Wang S, Gao X, Zhang Z, Fang Y (2019) Preparation and performance of form-stable TBAB hydrate/SiO2 composite PCM for cold energy storage. Int J Refrig 101:117–124. https://doi.org/10.1016/j.ijrefrig.2019.02.020

    Article  CAS  Google Scholar 

  31. Liu Y, Yang Y (2018) Form-stable phase change material based on Na2CO3·10H2O-Na2HPO4·12H2O eutectic hydrated salt/expanded graphite oxide composite: The influence of chemical structures of expanded graphite oxide. Renew Energy 115:734–740. https://doi.org/10.1016/j.renene.2017.08.097

    Article  CAS  Google Scholar 

  32. Li Y, Li C, Lin N, Xie B, Zhang D, Chen J (2021) Review on tailored phase change behavior of hydrated salt as phase change materials for energy storage. Mater Today Energy 22. https://doi.org/10.1016/j.mtener.2021.100866

  33. Wang C, Feng L, Li W, Zheng J, Tian W, Li X (2012) Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials. Solar Energy Mater Solar Cells 105:21–26. https://doi.org/10.1016/j.solmat.2012.05.031

    Article  CAS  Google Scholar 

  34. Zhang Y, Zhang X, Ji J, Zhen Q (2018) Thermal properties of urea/Sodium acetate trihydrate composite phase change materials. Energy Res Util 28–33. https://doi.org/10.16404/j.cnki.issn1001-5523.2018.06.011

  35. Solé A, Miró L, Barreneche C, Martorell I, Cabeza LF (2013) Review of the T -history method to determine thermophysical properties of phase change materials (PCM). Renewable and Sustainable Energy Reviews 26: 425-436. https://doi.org/10.1016/j.rser.2013.05.066

  36. Zhang L, Zhang P, Wang F, Kang M, Li R, Mou Y, Huang Y (2016) Phase change materials based on polyethylene glycol supported by graphene-based mesoporous silica sheets. Appl Thermal Eng 101:217–223. https://doi.org/10.1016/j.applthermaleng.2016.02.120

    Article  CAS  Google Scholar 

  37. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

  38. Tao L, Chen S, Liu H, Han N, Zhang X (2021) Fabrication and characterization of Poly(n-alkyl acrylic) ester shape-stable phase-change materials based on UV curing. ACS Appl Energy Mater 4:3358–3368. https://doi.org/10.1021/acsaem.0c03105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 2021 Construction Technology Project of Hubei Provincial Department of Housing and Urban-Rural Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanwan Fu.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, G., Fu, W., Zhou, W. et al. Preparation and properties of Na2HPO4·12H2O-expanded pertile shape stable phase change material for building field. J Polym Res 30, 311 (2023). https://doi.org/10.1007/s10965-023-03701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03701-x

Keywords

Navigation