Skip to main content
Log in

A comparative QCM-D study for various drug sorption behaviors and chemical degradation of chitosan/PAA LbL multilayered films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the study, the loading and desorption properties of four different drug models, namely ibuprofen sodium (IBFNa), diclofenac sodium (DCFNa), gentamicin sulfate (GS), and propranolol hydrochloride (P-HCl), through chitosan (CHI)/poly(acrylic acid) (PAA) and poly(styrene sulfonate) (PSS) based multilayers are monitored using quartz crystal microbalance-dissipation (QCM-D) and UV–vis spectrophotometry. Also, the layer growth of single/blend layer-by-layer (LbL) films is studied as a function of the blend composition. 72.5% DCFNa, 37.5% IBFNa, 34.7% GS, and 23.3% P-HCl (w/w) loadings are achieved for the LbL multilayers. Drug-loaded LbL films start to lose their layer integrity under an acidic medium regardless of the drug type while they show large swelling at pH 11. ΔD values significantly increase with IBF-Na and DCF-Na loading whereas this effect is minimal for GS and P-HCl insertion. In vitro analyses reveal that most of the loaded drug is released within five minutes and the desorption percentages are found to be 20.7% and 20.6% at pH 6.8 and 11 at the end of 120 h, respectively. SEM results show that the LbL films partially shrink and become more rugged during IBF uptake and release. The main findings of this study can provide a basis for controlling the loading and release of the desired drug molecule depending on the multilayer composition and stability as a function of the swelling properties and polyelectrolyte-drugs interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wood KC, Boedicker JQ, Lynn DM, Hammond PT (2005) Tunable Drug Release from Hydrolytically Degradable Layer-by-Layer Thin Films. Langmuir 21(4):1603–1609. https://doi.org/10.1021/la0476480

    Article  CAS  PubMed  Google Scholar 

  2. Hsu BB, Hagerman SR, Jamieson K, Veselinovic J, O’Neill N, Holler E, Ljubimova JY, Hammond PT (2014) Multilayer Films Assembled from Naturally-Derived Materials for Controlled Protein Release. Biomacromol 15(6):2049–2057. https://doi.org/10.1021/bm5001839

    Article  CAS  Google Scholar 

  3. Yang G, Xu L, Chao Y, Xu J, Sun X, Wu Y, Peng R, Liu Z (2017) Hollow MnO2 as a Tumor-Microenvironment-Responsive Biodegradable Nano-Platform for Combination Therapy Favoring Antitumor Immune Responses. Nat Commun 8(1). https://doi.org/10.1038/s41467-017-01050-0

  4. Kyzioł A, Mazgała A, Michna J, Regiel-Futyra A, Sebastian V (2017) Preparation and Characterization of Alginate/Chitosan Formulations for Ciprofloxacin-Controlled Delivery. J Biomater Appl 32(2):162–174. https://doi.org/10.1177/0885328217714352

    Article  CAS  PubMed  Google Scholar 

  5. Park S, Choi D, Jeong H, Heo J, Hong J (2017) Drug Loading and Release Behavior Depending on the Induced Porosity of Chitosan/Cellulose Multilayer Nanofilms. Mol Pharm 14(10):3322–3330. https://doi.org/10.1021/acs.molpharmaceut.7b00371

    Article  CAS  PubMed  Google Scholar 

  6. Jang Y, Akgun B, Kim H, Satija S, Char K (2012) Controlled Release from Model Blend Multilayer Films Containing Mixtures of Strong and Weak Polyelectrolytes. Macromolecules 45(8):3542–3549. https://doi.org/10.1021/ma3002615

    Article  CAS  Google Scholar 

  7. Alkekhia D, Hammond PT, Shukla A (2020) Layer-by-Layer Biomaterials for. Drug Delivery. https://doi.org/10.1146/annurev-bioeng-060418

    Article  Google Scholar 

  8. Zhao S, Caruso F, Dahne L, Decher G, De Geest BG, Fan J, Feliu N, Gogotsi Y, Hammond PT, Hersam MC, Khademhosseini A, Kotov N, Leporatti S, Li Y, Lisdat F, Liz-Marzan LM, Moya S, Mulvaney P, Rogach AL, Roy S, Shchukin DG, Skirtach AG, Stevens MM, Sukhorukov GB, Weiss PS, Yue Z, Zhu D, Parak WJ (2019) The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Mohwald. ACS Nano 13(6):6151–6169. https://doi.org/10.1021/acsnano.9b03326

    Article  CAS  PubMed  Google Scholar 

  9. Johnston APR, Cortez C, Angelatos AS, Caruso F (2006) Layer-by-Layer Engineered Capsules and Their Applications. Current Opinion in Colloid and Interface Science, pp 203–209. https://doi.org/10.1016/j.cocis.2006.05.001

  10. Hsu BB, Hagerman SR, Jamieson K, Castleberry SA, Wang W, Holler E, Ljubimova JY, Hammond PT (2015) Multifunctional Self-Assembled Films for Rapid Hemostat and Sustained Anti-Infective Delivery. ACS Biomater Sci Eng 1(3):148–156. https://doi.org/10.1021/ab500050m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F (2016) Innovation in Layer-by-Layer Assembly. Chemical Reviews. American Chemical Society December 14, 2016, pp 14828–14867. https://doi.org/10.1021/acs.chemrev.6b00627

  12. Izquierdo A, Ono SS, Voegel JC, Schaaf P, Decher G (2005) Dipping versus Spraying: Exploring the Deposition Conditions for Speeding up Layer-by-Layer Assembly. Langmuir 21(16):7558–7567. https://doi.org/10.1021/la047407s

    Article  CAS  PubMed  Google Scholar 

  13. Vallés C, Zhang X, Cao J, Lin F, Young RJ, Lombardo A, Ferrari AC, Burk L, Mülhaupt R, Kinloch IA (2019) Graphene/Polyelectrolyte Layer-by-Layer Coatings for Electromagnetic Interference Shielding. ACS Appl Nano Mater 2(8):5272–5281. https://doi.org/10.1021/acsanm.9b01126

    Article  CAS  Google Scholar 

  14. Weng GM, Li J, Alhabeb M, Karpovich C, Wang H, Lipton J, Maleski K, Kong J, Shaulsky E, Elimelech M, Gogotsi Y, Taylor AD (2018) Layer-by-Layer Assembly of Cross-Functional Semi-Transparent MXene-Carbon Nanotubes Composite Films for Next-Generation Electromagnetic Interference Shielding. Adv Funct Mater 28(44). https://doi.org/10.1002/adfm.201803360

  15. Song F, Jie W, Zhang T, Li W, Jiang Y, Wan L, Liu W, Li X, Liu B (2016) Room-temperature fabrication of a three-dimensional reduced-graphene oxide/polypyrrole/hydroxyapatite composite scaffold for bone tissue engineering. RSC Adv 6(95):92804–92812. https://doi.org/10.1039/c6ra15267h

    Article  CAS  Google Scholar 

  16. Wang J, Wang H, Wang Y, Li J, Su Z, Wei G (2014) Alternate Layer-by-Layer Assembly of Graphene Oxide Nanosheets and Fibrinogen Nanofibers on a Silicon Substrate for a Biomimetic Three-Dimensional Hydroxyapatite Scaffold. J Mater Chem B 2(42):7360–7368. https://doi.org/10.1039/c4tb01324g

    Article  CAS  PubMed  Google Scholar 

  17. Wang Y, Liu Y, Cheng Y, Kim E, Rubloff GW, Bentley WE, Payne GF (2011) Coupling Electrodeposition with Layer-by-Layer Assembly to Address Proteins within Microfluidic Channels. Adv Mater 23(48):5817–5821. https://doi.org/10.1002/adma.201103726

    Article  CAS  PubMed  Google Scholar 

  18. Milosavljevic V, Jamroz E, Gagic M, Haddad Y, Michalkova H, Balkova R, Tesarova B, Moulick A, Heger Z, Richtera L, Kopel P, Adam V (2020) Encapsulation of Doxorubicin in Furcellaran/Chitosan Nanocapsules by Layer-by-Layer Technique for Selectively Controlled Drug Delivery. Biomacromol 21(2):418–434. https://doi.org/10.1021/acs.biomac.9b01175

    Article  CAS  Google Scholar 

  19. Zhou J, Romero G, Rojas E, Ma L, Moya S, Gao C (2010) Layer by Layer Chitosan/Alginate Coatings on Poly(Lactide-Co-Glycolide) Nanoparticles for Antifouling Protection and Folic Acid Binding to Achieve Selective Cell Targeting. J Colloid Interface Sci 345(2):241–247. https://doi.org/10.1016/j.jcis.2010.02.004

    Article  CAS  PubMed  Google Scholar 

  20. Martins GV, Merino EG, Mano JF, Alves NM (2010) Crosslink Effect and Albumin Adsorption onto Chitosan/Alginate Multilayered Systems: An in Situ QCM-D Study. Macromol Biosci 10(12):1444–1455. https://doi.org/10.1002/mabi.201000193

    Article  CAS  PubMed  Google Scholar 

  21. Sousa MP, Mano JF (2017) Cell-adhesive bioinspired and catechol-based multilayer freestanding membranes for bone tissue engineering. Biomimetics 2(4). https://doi.org/10.3390/biomimetics2040019

  22. Escobar A, Muzzio NE, Andreozzi P, Libertone S, Tasca E, Azzaroni O, Grzelczak M, Moya SE (2019) Antibacterial layer-by-layer films of poly(acrylic acid)–gentamicin complexes with a combined burst and sustainable release of gentamicin. Adv Mater Interfaces 6(22). https://doi.org/10.1002/admi.201901373

  23. Borges J, Sousa MP, Cinar G, Caridade SG, Guler MO, Mano JF (2017) Nanoengineering Hybrid Supramolecular Multilayered Biomaterials Using Polysaccharides and Self-Assembling Peptide Amphiphiles. Adv Funct Mater 27(17). https://doi.org/10.1002/adfm.201605122

  24. Barsan MM, David M, Florescu M, Ţugulea L, Brett CMA (2014) A New Self-Assembled Layer-by-Layer Glucose Biosensor Based on Chitosan Biopolymer Entrapped Enzyme with Nitrogen Doped Graphene. Bioelectrochemistry 99:46–52. https://doi.org/10.1016/j.bioelechem.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  25. Deng C, Chen J, Nie Z, Si S (2010) A Sensitive and Stable Biosensor Based on the Direct Electrochemistry of Glucose Oxidase Assembled Layer-by-Layer at the Multiwall Carbon Nanotube-Modified Electrode. Biosens Bioelectron 26(1):213–219. https://doi.org/10.1016/j.bios.2010.06.013

    Article  CAS  PubMed  Google Scholar 

  26. Liang K, Such GK, Zhu Z, Dodds SJ, Johnston APR, Cui J, Ejima H, Caruso F (2012) Engineering Cellular Degradation of Multilayered Capsules through Controlled Cross-Linking. ACS Nano 6(11):10186–10194. https://doi.org/10.1021/nn3039353

    Article  CAS  PubMed  Google Scholar 

  27. Campos J, Jiménez C, Trigo C, Ibarra P, Rana D, Thiruganesh R, Ramalingam M, Haidar ZS (2015) Quartz Crystal Microbalance with Dissipation Monitoring: A Powerful Tool for Bionanoscience and Drug Discovery. Journal of Bionanoscience. American Scientific Publishers August 1, 2015, pp 249–260. https://doi.org/10.1166/jbns.2015.1310

  28. Tonda-Turo C, Carmagnola I, Ciardelli G (2018) Quartz crystal microbalance with dissipation monitoring: a powerful method to predict the in vivo behavior of bioengineered surfaces. Front Bioeng Biotechnol 6. https://doi.org/10.3389/fbioe.2018.00158

  29. Silva D, de Sousa HC, Gil MH, Santos LF, Amaral RA, Saraiva JA, Salema-Oom M, Alvarez-Lorenzo C, Serro AP, Saramago B (2021) Imprinted hydrogels with LbL coating for dual drug release from soft contact lenses materials. Mater Sci Eng C 120(November 2020):111687. https://doi.org/10.1016/j.msec.2020.111687

    Article  CAS  Google Scholar 

  30. Lu B, Luo D, Zhao A, Wang H, Zhao Y, Maitz MF, Yang P, Huang N (2019) PH responsive chitosan and hyaluronic acid layer by layer film for drug delivery applications. Prog Org Coat 135(February):240–247. https://doi.org/10.1016/j.porgcoat.2019.06.012

    Article  CAS  Google Scholar 

  31. Qu Y, Wei T, Zhan W, Hu C, Cao L, Yu Q, Chen H (2017) A Reusable Supramolecular Platform for the Specific Capture and Release of Proteins and Bacteria. J Mater Chem B 5(3):444–453. https://doi.org/10.1039/c6tb02821g

    Article  CAS  PubMed  Google Scholar 

  32. San Juan AMT, Rodgers T, Bedolla C, Noriega F, Romero G (2020) Layer by Layer Surface Engineering of Poly(Lactide-Co-Glycolide) Nanoparticles for Plasmid DNA Delivery. J Appl Polym Sci 137(32). https://doi.org/10.1002/app.49377

  33. Ramasamy T, Haidar ZS, Tran TH, Choi JY, Jeong JH, Shin BS, Choi HG, Yong CS, Kim JO (2014) Layer-by-layer assembly of liposomal nanoparticles with PEGylated polyelectrolytes enhances systemic delivery of multiple anticancer drugs. Acta Biomater 10(12):5116–5127. https://doi.org/10.1016/j.actbio.2014.08.021

    Article  CAS  PubMed  Google Scholar 

  34. Lynge ME, Baekgaard Laursen M, Hosta-Rigau L, Jensen BEB, Ogaki R, Smith AAA, Zelikin AN, Städler B (2013) Liposomes as Drug Deposits in Multilayered Polymer Films. ACS Appl Mater Interfaces 5(8):2967–2975. https://doi.org/10.1021/am4006868

    Article  CAS  PubMed  Google Scholar 

  35. Seidi F, Jenjob R, Crespy D (2018) Designing Smart Polymer Conjugates for Controlled Release of Payloads. Chemical Reviews. American Chemical Society April 11, 2018, pp 3965–4036. https://doi.org/10.1021/acs.chemrev.8b00006

  36. Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA (2019) Stimuli-Responsive Drug Release from Smart Polymers. Journal of Functional Biomaterials. MDPI AG September 1, 2019. https://doi.org/10.3390/jfb10030034

  37. Wong PT, Choi SK (2015) Mechanisms of Drug Release in Nanotherapeutic Delivery Systems. Chemical Reviews. American Chemical Society May 13, 2015, pp 3388–3432. https://doi.org/10.1021/cr5004634

  38. Zelikin AN (2010) Drug Releasing Polymer Thin Films: New Era of Surface-Mediated Drug Delivery. ACS Nano. May 25, 2010, pp 2494–2509. https://doi.org/10.1021/nn100634r

  39. Soares JC, Soares AC, Rodrigues VC, Melendez ME, Santos AC, Faria EF, Reis RM, Carvalho AL, Oliveira ON (2019) Detection of the Prostate Cancer Biomarker PCA3 with Electrochemical and Impedance-Based Biosensors. ACS Appl Mater Interfaces 11(50):46645–46650. https://doi.org/10.1021/acsami.9b19180

    Article  CAS  PubMed  Google Scholar 

  40. Husteden C, Doberenz F, Goergen N, Pinnapireddy SR, Janich C, Langner A, Syrowatka F, Repanas A, Erdmann F, Jedelská J, Bakowsky U, Groth T, Wölk C (2020) Contact-Triggered Lipofection from Multilayer Films Designed as Surfaces for in Situ Transfection Strategies in Tissue Engineering. ACS Appl Mater Interfaces 12(8):8963–8977. https://doi.org/10.1021/acsami.9b18968

    Article  CAS  PubMed  Google Scholar 

  41. Huang R, Li W, Lv X, Lei Z, Bian Y, Deng H, Wang H, Li J, Li X (2015) Biomimetic LBL Structured Nanofibrous Matrices Assembled by Chitosan/Collagen for Promoting Wound Healing. Biomaterials 53:58–75. https://doi.org/10.1016/j.biomaterials.2015.02.076

    Article  CAS  PubMed  Google Scholar 

  42. Janardhanam LSL, Indukuri VV, Verma P, Dusane AC, Venuganti VVK (2020) Functionalized layer-by-layer assembled film with directional 5-fluorouracil release to target colon cancer. Mater Sci Eng C 115. https://doi.org/10.1016/j.msec.2020.111118

  43. Wang Y, Qian J, Yang M, Xu W, Wang J, Hou G, Ji L, Suo A (2019) Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan-based nanoparticles for in vitro synergistic combination chemotherapy of breast cancer. Carbohydr Polym 225. https://doi.org/10.1016/j.carbpol.2019.115206

  44. Liu XQ, Picart C (2016) Layer-by-layer assemblies for cancer treatment and diagnosis. Adv Mater 28(6):1295–1301. https://doi.org/10.1002/adma.201502660

    Article  CAS  PubMed  Google Scholar 

  45. Silva D, Pinto LFV, Bozukova D, Santos LF, Serro AP, Saramago B (2016) Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surf B Biointerfaces 147:81–89. https://doi.org/10.1016/j.colsurfb.2016.07.047

    Article  CAS  PubMed  Google Scholar 

  46. Hu X, Gong X (2016) A new route to fabricate biocompatible hydrogels with controlled drug delivery behavior. J Colloid Interface Sci 470:62–70. https://doi.org/10.1016/j.jcis.2016.02.037

    Article  CAS  PubMed  Google Scholar 

  47. Huang JF, Zhong J, Chen GP, Lin ZT, Deng Y, Liu YL, Cao PY, Wang B, Wei Y, Wu T, Yuan J, Jiang GB (2016) A Hydrogel-Based Hybrid Theranostic Contact Lens for Fungal Keratitis. ACS Nano 10(7):6464–6473. https://doi.org/10.1021/acsnano.6b00601

    Article  CAS  PubMed  Google Scholar 

  48. Graisuwan W, Wiarachai O, Ananthanawat C, Puthong S, Soogarun S, Kiatkamjornwong S, Hoven VP (2012) Multilayer film assembled from charged derivatives of chitosan: physical characteristics and biological responses. J Colloid Interface Sci 376(1):177–188. https://doi.org/10.1016/j.jcis.2012.02.039

    Article  CAS  PubMed  Google Scholar 

  49. Huang J, Zajforoushan Moghaddam S, Maroni P, Thormann E (2020) Swelling Behavior, Interaction, and Electrostatic Properties of Chitosan/Alginate Dialdehyde Multilayer Films with Different Outermost Layer. Langmuir 36(14):3782–3791. https://doi.org/10.1021/acs.langmuir.0c00330

    Article  CAS  PubMed  Google Scholar 

  50. Hu X, Ji J (2010) Construction of Multifunctional Coatings via Layer-by-Layer Assembly of Sulfonated Hyperbranched Polyether and Chitosan. Langmuir 26(4):2624–2629. https://doi.org/10.1021/la902719k

    Article  CAS  PubMed  Google Scholar 

  51. Huang J, Zajforoushan Moghaddam S, Thormann E (2019) Structural Investigation of a Self-Cross-Linked Chitosan/Alginate Dialdehyde Multilayered Film with in Situ QCM-D and Spectroscopic Ellipsometry. ACS Omega 4(1):2019–2029. https://doi.org/10.1021/acsomega.8b03145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alves NM, Picart C, Mano JF (2009) Self Assembling and Crosslinking of Polyelectrolyte Multilayer Films of Chitosan and Alginate Studies by OCM and IR Spectroscopy. Macromol Biosci 9(8):776–785. https://doi.org/10.1002/mabi.200800336

    Article  CAS  PubMed  Google Scholar 

  53. Belbekhouche S, Mansour O, Carbonnier B (2018) Promising Sub-100 nm Tailor Made Hollow Chitosan/Poly(Acrylic Acid) Nanocapsules for Antibiotic Therapy. J Colloid Interface Sci 522:183–190. https://doi.org/10.1016/j.jcis.2018.03.061

    Article  CAS  PubMed  Google Scholar 

  54. Silva JM, Caridade SG, Costa RR, Alves NM, Groth T, Picart C, Reis RL, Mano JF (2015) PH Responsiveness of Multilayered Films and Membranes Made of Polysaccharides. Langmuir 31(41):11318–11328. https://doi.org/10.1021/acs.langmuir.5b02478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Costa RR, Custõdio CA, Arias FJ, Rodríguez-Cabello JC, Mano JF (2011) Layer-by-Layer Assembly of Chitosan and Recombinant Biopolymers into Biomimetic Coatings with Multiple Stimuli-Responsive Properties. Small 7(18):2640–2649. https://doi.org/10.1002/smll.201100875

    Article  CAS  PubMed  Google Scholar 

  56. Sun L, Xiong X, Zou Q, Ouyang P, Burkhardt C, Krastev R (2017) Design of Intelligent Chitosan/Heparin Hollow Microcapsules for Drug Delivery. J Appl Polym Sci 134(5). https://doi.org/10.1002/app.44425

  57. Guzmán E, Cavallo JA, Chuliá-Jordán R, Gómez C, Strumia MC, Ortega F, Rubio RG (2011) PH-induced changes in the fabrication of multilayers of poly(acrylic acid) and chitosan: fabrication, properties, and tests as a drug storage and delivery system. Langmuir 27(11):6836–6845. https://doi.org/10.1021/la200522r

    Article  CAS  PubMed  Google Scholar 

  58. Petrila LM, Bucatariu F, Mihai M, Teodosiu C (2021) Polyelectrolyte multilayers: an overview on fabrication, properties, and biomedical and environmental applications. materials. MDPI AG August 1, 2021. https://doi.org/10.3390/ma14154152

  59. Burke SE, Barrett CJ (2003) PH-Responsive Properties of Multilayered Poly(L-Lysine)/Hyaluronic Acid Surfaces. Biomacromol 4(6):1773–1783. https://doi.org/10.1021/bm034184w

    Article  CAS  Google Scholar 

  60. Itano K, Choi J, Rubner MF (2005) Mechanism of the PH-Induced Discontinuous Swelling/Deswelling Transitions of Poly(Allylamine Hydrochloride)-Containing Polyelectrolyte Multilayer Films. Macromolecules 38(8):3450–3460. https://doi.org/10.1021/ma047667g

    Article  CAS  Google Scholar 

  61. Schönhoff M, Bieker P (2010) Linear and Exponential Growth Regimes of Multilayers of Weak Polyelectrolytes in Dependence on PH. Macromolecules 43(11):5052–5059. https://doi.org/10.1021/ma1007489

    Article  CAS  Google Scholar 

  62. Yuan W, Dong H, Li CM, Cui X, Yu L, Lu Z, Zhou Q (2007) PH-Controlled Construction of Chitosan/Alginate Multilayer Film: Characterization and Application for Antibody Immobilization. Langmuir 23(26):13046–13052. https://doi.org/10.1021/la702774a

    Article  CAS  PubMed  Google Scholar 

  63. Hu B, Guo Y, Li H, Liu X, Fu Y, Ding F (2021) Recent advances in chitosan-based layer-by-layer biomaterials and their biomedical applications. Carbohydrate Polymers. Elsevier Ltd November 1, 2021. https://doi.org/10.1016/j.carbpol.2021.118427

  64. Jang Y, Seo J, Akgun B, Satija S, Char K (2013) Molecular Weight Dependence on the Disintegration of Spin-Assisted Weak Polyelectrolyte Multilayer Films. Macromolecules 46(11):4580–4588. https://doi.org/10.1021/ma4007736

    Article  CAS  Google Scholar 

  65. Wohl BM, Engbersen JFJ (2012) Responsive layer-by-layer materials for drug delivery. Journal of Controlled Release. February 28, 2012, pp 2–14. https://doi.org/10.1016/j.jconrel.2011.08.035

  66. Yuan W, Weng GM, Lipton J, Li CM, Van Tassel PR, Taylor AD (2020) Weak polyelectrolyte-based multilayers via layer-by-layer assembly: approaches, properties, and applications. Advances in Colloid and Interface Science. Elsevier B.V. August 1, 2020. https://doi.org/10.1016/j.cis.2020.102200

  67. Vidyasagar A, Sung C, Losensky K, Lutkenhaus JL (2012) PH-Dependent Thermal Transitions in Hydrated Layer-by-Layer Assemblies Containing Weak Polyelectrolytes. Macromolecules 45(22):9169–9176. https://doi.org/10.1021/ma3020454

    Article  CAS  Google Scholar 

  68. Antunes JC, Pereira CL, Molinos M, Ferreira-Da-Silva F, Dessi M, Gloria A, Ambrosio L, Gonca̧lves RM, Barbosa MA, (2011) Layer-by-layer self-assembly of chitosan and poly(γ-glutamic acid) into polyelectrolyte complexes. Biomacromolecules 12(12):4183–4195. https://doi.org/10.1021/bm2008235

    Article  CAS  PubMed  Google Scholar 

  69. Sensor Surface Recommended Cleaning Protocol QSX 301 Gold A-I QSX 303 Silicon Dioxide B QSX 304 Stainless Steel C-I QSX 305 Polystyrene D QSX 309 Aluminum Oxide E-I (or B) QSX 310 Titanium C-I (or B) QSX 311 Tantalum C-I QSX 314 Platinum A-II QSX 316 Iridium C-II QSX 318 Silicon Dioxide 300nm B QSX 319 Iron C-II QSX 322 Silver C-II QSX 324 Tantalum Nitride C-I QSX 325 Cerium Oxide E-I QSX 326 Iron Oxide E-II QSX 327 Hydroxyapatite E-III QSX 328 Silicon Nitride B QSX 330 Zirconium Oxide B

  70. Yılmaz Aykut D, Yolaçan Ö, Deligöz H (2020) PH stimuli drug loading/release platforms from LbL single/blend films: QCM-D and in-vitro studies. Colloids Surf A Physicochem Eng Asp 602:125113. https://doi.org/10.1016/j.colsurfa.2020.125113

    Article  CAS  Google Scholar 

  71. Tardy BL, Richardson JJ, Nithipipat V, Kempe K, Guo J, Cho KL, Rahim MA, Ejima H, Caruso F (2019) Protein Adsorption and Coordination-Based End-Tethering of Functional Polymers on Metal-Phenolic Network Films. Biomacromol 20(3):1421–1428. https://doi.org/10.1021/acs.biomac.9b00006

    Article  CAS  Google Scholar 

  72. Tardy BL, Tan S, Dam HH, Suma T, Guo J, Qiao GG, Caruso F (2017) Formation of Polyrotaxane Particles via Template Assembly. Biomacromol 18(7):2118–2127. https://doi.org/10.1021/acs.biomac.7b00450

    Article  CAS  Google Scholar 

  73. Sauerbrey G (1959) Verwendung von Schwingquarzen Zur W~igung Diinner Schichten Und Zur Mikrow~igung*, Vol. 55

  74. Schoeler B, Kumaraswamy G, Caruso F (2002) Investigation of the Influence of Polyelectrolyte Charge Density on the Growth of Multilayer Thin Films Prepared by the Layer-by-Layer Technique. Macromolecules 35(3):889–897. https://doi.org/10.1021/ma011349p

    Article  CAS  Google Scholar 

  75. Easley AD, Ma T, Eneh CI, Yun J, Thakur RM, Lutkenhaus JL (2022) A practical guide to quartz crystal microbalance with dissipation monitoring of thin polymer films. Journal of Polymer Science. John Wiley and Sons Inc April 1, 2022, pp 1090–1107. https://doi.org/10.1002/pol.20210324

  76. Huang Y, King DR, Sun TL, Nonoyama T, Kurokawa T, Nakajima T, Gong JP (2017) Energy-Dissipative Matrices Enable Synergistic Toughening in Fiber Reinforced Soft Composites. Adv Funct Mater 27(9). https://doi.org/10.1002/adfm.201605350

  77. Sui Z, Schlenoff JB (203) Controlling electroosmotic flow in microchannels with ph-responsive polyelectrolyte multilayers. Langmuir. September 16, 2003, pp 7829–7831. https://doi.org/10.1021/la034682q

  78. Deligöz H, Tieke B (2014) QCM-D Study of Layer-by-Layer Assembly of Polyelectrolyte Blend Films and Their Drug Loading-Release Behavior. Colloids Surf A Physicochem Eng Asp 441:725–736. https://doi.org/10.1016/j.colsurfa.2013.10.033

    Article  CAS  Google Scholar 

  79. Saarinen T, Österberg M, Laine J (2009) Properties of Cationic Polyelectrolyte Layers Adsorbed on Silica and Cellulose Surfaces Studied by QCM-D-Effect of Polyelectrolyte Charge Density and Molecular Weight. J Dispers Sci Technol 30(6):969–979. https://doi.org/10.1080/01932690802646488

    Article  CAS  Google Scholar 

  80. Luo R, Venkatraman SS, Neu B (2013) Layer-by-Layer Polyelectrolyte-Polyester Hybrid Microcapsules for Encapsulation and Delivery of Hydrophobic Drugs. Biomacromol 14(7):2262–2271. https://doi.org/10.1021/bm4003915

    Article  CAS  Google Scholar 

  81. Sun H, Choi D, Heo J, Jung SY, Hong J (2020) Studies on the drug loading and release profiles of degradable chitosan-based multilayer films for anticancer treatment. Cancers (Basel) 12(3). https://doi.org/10.3390/cancers12030593

  82. Bataglioli RA, Rocha Neto JBM, Leaõ BS, Germiniani LGL, Taketa TB, Beppu MM (2020) Interplay of the Assembly Conditions on Drug Transport Mechanisms in Polyelectrolyte Multilayer Films. Langmuir 36(42):12532–12544. https://doi.org/10.1021/acs.langmuir.0c01980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Le HQ, Sekiguchi Y, Ardiyanta D, Shimoyama Y (2018) CO2-Activated Adsorption: A New Approach to Dye Removal by Chitosan Hydrogel. ACS Omega 3(10):14103–14110. https://doi.org/10.1021/acsomega.8b01825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Feng Z, Simeone A, Odelius K, Hakkarainen M (2017) Biobased Nanographene Oxide Creates Stronger Chitosan Hydrogels with Improved Adsorption Capacity for Trace Pharmaceuticals. ACS Sustain Chem Eng 5(12):11525–11535. https://doi.org/10.1021/acssuschemeng.7b02809

    Article  CAS  Google Scholar 

  85. Feng Z, Danjo T, Odelius K, Hakkarainen M, Iwata T, Albertsson AC (2019) Recyclable Fully Biobased Chitosan Adsorbents Spray-Dried in One Pot to Microscopic Size and Enhanced Adsorption Capacity. Biomacromol 20(5):1956–1964. https://doi.org/10.1021/acs.biomac.9b00186

    Article  CAS  Google Scholar 

  86. dos Santos de Macedo B, de Almeida T, da Costa Cruz R, Pereira Netto AD, da Silva L, Berret JF, Vitorazi L (2020) Effect of PH on the complex coacervation and on the formation of layers of sodium alginate and PDADMAC. ArXiv

  87. Sáringer S, Rouster P, Szilágyi I (2019) Regulation of the Stability of Titania Nanosheet Dispersions with Oppositely and Like-Charged Polyelectrolytes. Langmuir 35(14):4986–4994. https://doi.org/10.1021/acs.langmuir.9b00242

    Article  CAS  PubMed  Google Scholar 

  88. Shiratori SS, Rubner MF (2000) PH-Dependent Thickness Behavior of Sequentially Adsorbed Layers of Weak Polyelectrolytes. Macromolecules 33(11):4213–4219. https://doi.org/10.1021/ma991645q

    Article  CAS  Google Scholar 

  89. Aljawish A, Chevalot I, Jasniewski J, Scher J, Muniglia L (2018) Enzymatic Synthesis of Chitosan Derivatives and Their Potential Applications. J Mol Catal B Enzym 2015(112):25–39. https://doi.org/10.1016/j.molcatb.2014.10.014

    Article  CAS  Google Scholar 

  90. Tamanna T, Bulitta JB, Yu A (2015) Controlling Antibiotic Release from Mesoporous Silica Nano Drug Carriers via Self-Assembled Polyelectrolyte Coating. J Mater Sci Mater Med 26(2):1–7. https://doi.org/10.1007/s10856-015-5444-0

    Article  CAS  Google Scholar 

  91. Dantas RF, Rossiter O, Teixeira AKR, Simões ASM, da Silva VL (2010) Direct UV Photolysis of Propranolol and Metronidazole in Aqueous Solution. Chem Eng J 158(2):143–147. https://doi.org/10.1016/j.cej.2009.12.017

    Article  CAS  Google Scholar 

  92. O’Neal JT, Dai EY, Zhang Y, Clark KB, Wilcox KG, George IM, Ramasamy NE, Enriquez D, Batys P, Sammalkorpi M, Lutkenhaus JL (2018) QCM-D Investigation of Swelling Behavior of Layer-by-Layer Thin Films upon Exposure to Monovalent Ions. Langmuir 34(3):999–1009. https://doi.org/10.1021/acs.langmuir.7b02836

    Article  CAS  PubMed  Google Scholar 

  93. Eneh CI, Kastinen T, Oka S, Batys P, Sammalkorpi M, Lutkenhaus JL (2022) Quantification of Water-Ion Pair Interactions in Polyelectrolyte Multilayers Using a Quartz Crystal Microbalance Method. ACS Polymers Au 2(4):287–298. https://doi.org/10.1021/acspolymersau.2c00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Paul S, Paul D, Basova T, Ray AK (2008) Studies of Adsorption and Viscoelastic Properties of Proteins onto Liquid Crystal Phthalocyanine Surface Using Quartz Crystal Microbalance with Dissipation Technique. J Phys Chem C 112(31):11822–11830. https://doi.org/10.1021/jp800975t

    Article  CAS  Google Scholar 

  95. Kou J, Tao D, Xu G (2010) A Study of Adsorption of Dodecylamine on Quartz Surface Using Quartz Crystal Microbalance with Dissipation. Colloids Surf A Physicochem Eng Asp 368(1–3):75–83. https://doi.org/10.1016/j.colsurfa.2010.07.017

    Article  CAS  Google Scholar 

  96. Doliška A, Ribitsch V, Stana Kleinschek K, Strnad S (2013) Viscoelastic Properties of Fibrinogen Adsorbed onto Poly(Ethylene Terephthalate) Surfaces by QCM-D. In Carbohydrate Polymers 93:246–255. https://doi.org/10.1016/j.carbpol.2012.02.075

    Article  CAS  Google Scholar 

  97. Cunha RR, Chaves SC, Ribeiro MMAC, Torres LMFC, Muñoz RAA, Santos WTPD, Richter EM (2015) Simultaneous Determination of Caffeine, Paracetamol, and Ibuprofen in Pharmaceutical Formulations by High-Performance Liquid Chromatography with UV Detection and by Capillary Electrophoresis with Conductivity Detection. J Sep Sci 38(10):1657–1662. https://doi.org/10.1002/jssc.201401387

    Article  CAS  PubMed  Google Scholar 

  98. Cho J, Quinn JF, Caruso F (2004) Fabrication of Polyelectrolyte Multilayer Films Comprising Nanoblended Layers. J Am Chem Soc 126(8):2270–2271. https://doi.org/10.1021/ja039830d

    Article  CAS  PubMed  Google Scholar 

  99. Guzmán E, Ritacco HA, Ortega F, Rubio RG (2012) Growth of Polyelectrolyte Layers Formed by Poly(4-Styrenesulfonate Sodium Salt) and Two Different Polycations: New Insights from Study of Adsorption Kinetics. J Phys Chem C 116(29):15474–15483. https://doi.org/10.1021/jp304522t

    Article  CAS  Google Scholar 

  100. Hong J, Kim BS, Char K, Hammond PT (2011) Inherent charge-shifting polyelectrolyte multilayer blends: a facile route for tunable protein release from surfaces. Biomacromol 12(8):2975–2981. https://doi.org/10.1021/bm200566k

    Article  CAS  Google Scholar 

  101. Quinn A, Tjipto E, Yu A, Gengenbach TR, Caruso F (2007) Polyelectrolyte blend multilayer films: surface morphology, wettability, and protein adsorption characteristics. Langmuir 23(9):4944–4949. https://doi.org/10.1021/la0634746

    Article  CAS  PubMed  Google Scholar 

  102. Wang C, Ye W, Zheng Y, Liu X, Tong Z (2007) Fabrication of drug-loaded biodegradable microcapsules for controlled release by combination of solvent evaporation and layer-by-layer self-assembly. Int J Pharm 338(1–2):165–173. https://doi.org/10.1016/j.ijpharm.2007.01.049

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this research was provided by the TUBITAK (The Scientific and Technological Research Council of Turkey) project number 112M290 and Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpaşa. All authors gratefully thank the TUBITAK-ARDEB 1001 program and Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpaşa for financial support (Project No: 35056).

Funding

The Scientific and Technological Research Council of Turkey (Grant 112M290) provided the funding for this study. The work was also supported by the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpaşa (Project number 35056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Deligoz.

Ethics declarations

Competing interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 324 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz-Aykut, D., Yolacan, O. & Deligoz, H. A comparative QCM-D study for various drug sorption behaviors and chemical degradation of chitosan/PAA LbL multilayered films. J Polym Res 30, 307 (2023). https://doi.org/10.1007/s10965-023-03691-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03691-w

Keywords

Navigation