Skip to main content
Log in

Stretchable and lightweight MWCNTs/TPU composites films with excellent electromagnetic interference shielding and dynamic mechanical properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Stretchable composites have drawn the significant focus of researchers due to their necessity and importance in advanced technical areas. In this paper, we prepared the multiwall carbon nanotube (MWCNTs)/thermoplastic polyurethane (TPU) composites with excellent dispersion using the double extrusion followed by solvent casting techniques. These techniques enhanced the interaction between the MWCNTs and TPU. The electrical properties, electromagnetic interference (EMI) shielding and dynamic mechanical analysis of the prepared MWCNTs/TPU composites are analyzed. The EMI shielding performance at different phr of MWCNTs reinforced TPU composites is determined in the X-band frequency range. The 20 phr MWCNTs reinforced TPU composite having a thickness of 0.15 mm showed a total shielding effectiveness of \(\sim\) 37.4 dB, which is much higher as compared to pure TPU. The improvement in electrical properties is well supported by scanning electron microscopy (SEM) images and Raman spectroscopic analysis. SEM is used to analyze the dispersion of MWCNTs within the TPU matrix. The morphology showed that MWCNTs are well dispersed in the TPU matrix with the addition of 5phr MWCNTs. It was found that 5phr MWCNTs reinforced TPU composites have an excellent value of storage modulus, loss modulus and tan \(\updelta\) which exhibit better properties as compared to the other MWCNTs reinforced TPU composites. The enhancement in DMA properties is due to the strong interfacial interaction between the fillers and matrix. These stretchable and light weight MWCNTs/TPU composites act as excellent EMI shielding materials, especially in next-generation defense and electronic devices industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koo CM, Sambyal P, Iqbal A, Shahzad F, Hong J (2021) Two-Dimensional Materials for Electromagnetic Shielding: John Wiley & Sons

  2. Wu J, Chung D (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 40(3):445–447

    Article  CAS  Google Scholar 

  3. Irnich W, De Bakker J, Bisping HJ (1978) Electromagnetic interference in implantable pacemakers. Pacing Clin Electrophysiol 1(1):52–61

    Article  CAS  PubMed  Google Scholar 

  4. Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol 5(6):927–931

    Article  CAS  PubMed  Google Scholar 

  5. Jyoti J, Arya AK (2020) EMI shielding and dynamic mechanical analysis of graphene oxide-carbon nanotube-acrylonitrile butadiene styrene hybrid composites. Polym Testing 91:106839

    Article  CAS  Google Scholar 

  6. Li X, Zhang L, Yin X (2012) Synthesis and Electromagnetic Shielding Property of Pyrolytic Carbon-Silicon Nitride Ceramics with Dense Silicon Nitride Coating. J Am Ceram Soc 95(3):1038–1041

    CAS  Google Scholar 

  7. Jyoti J, Singh BP (2021) A review on 3D graphene–carbon nanotube hybrid polymer nanocomposites. J Mater Sci 56(31):17411–17456

    Article  CAS  Google Scholar 

  8. Huang Y, Li N, Ma Y, Du F, Li F, He X et al (2007) The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites. Carbon 45(8):1614–1621

    Article  CAS  Google Scholar 

  9. Sankaran S, Deshmukh K, Ahamed MB, Pasha SK (2018) Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos A Appl Sci Manuf 114:49–71

    Article  CAS  Google Scholar 

  10. Zhan Y, Zheng X, Nan B, Lu M, Shi J, Wu K (2023) Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy. Eur Polym J 111847

  11. Kumar R, Sharma A, Pandey A, Chaudhary A, Dwivedi N, Shafeeq MM et al (2020) Lightweight carbon-red mud hybrid foam toward fire-resistant and efficient shield against electromagnetic interference. Sci Rep 10(1):9913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chaudhary A, Kumar R, Dhakate SR, Kumari S (2019) Scalable development of a multi-phase thermal management system with superior EMI shielding properties. Compos B Eng 158:206–217

    Article  CAS  Google Scholar 

  13. Sharma M, Singh MP, Srivastava C, Madras G, Bose S (2014) Poly (vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations. ACS Appl Mater Interfaces 6(23):21151–21160

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Huang Y, Zhang T, Chang H, Xiao P, Chen H et al (2015) Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv Mater 27(12):2049–2053

    Article  CAS  PubMed  Google Scholar 

  15. Zeng Z, Jin H, Chen M, Li W, Zhou L, Zhang Z (2016) Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv Func Mater 26(2):303–310

    Article  CAS  Google Scholar 

  16. Gupta TK, Singh BP, Dhakate SR, Singh VN, Mathur RB (2013) Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A 1(32):9138–9149

    Article  CAS  Google Scholar 

  17. Song Y, Phule AD, Yu Z, Zhang X, Du A, Wang H et al (2021) Lightweight and flexible silicone rubber foam with dopamine grafted multi-walled carbon nanotubes and silver nanoparticles using supercritical foaming technology: Its preparation and electromagnetic interference shielding performance. Eur Polymer J 161:110839

    Article  CAS  Google Scholar 

  18. Zhang H, Zheng X, Jiang R, Liu Z, Li W, Zhou X (2023) Research progress of functional composite electromagnetic shielding materials. Eur Polym J 111825

  19. Negi P, Gupta A, Singh M, Kumar R, Kumar S, Baskey HB et al (2022) Excellent microwave absorbing and electromagnetic shielding performance of grown MWCNT on activated carbon bifunctional composite. Carbon 198:151–161

    Article  CAS  Google Scholar 

  20. Sharma A, Kumar R, Gupta A, Agrawal PR, Dwivedi N, Mondal D et al (2022) Enhanced electromagnetic interference shielding properties of phenolic resin derived lightweight carbon foam decorated with electrospun zinc oxide nanofibers. Materials Today Communications 30:103055

    Article  CAS  Google Scholar 

  21. Candau N, Stoclet G, Tahon J-F, Demongeot A, Yilgor E, Yilgor I et al (2021) Mechanical reinforcement and memory effect of strain-induced soft segment crystals in thermoplastic polyurethane-urea elastomers. Polymer 223:123708

    Article  CAS  Google Scholar 

  22. Zeng Y, Chen Y, Sha D, Wu Y, Qiu R, Liu W (2022) Highly stretchable fatty acid chain-dangled thermoplastic polyurethane elastomers enabled by H-bonds and molecular chain entanglements. ACS Sustain Chem Eng 10(35):11524–11532

    Article  CAS  Google Scholar 

  23. Drobny JG (2014) Handbook of thermoplastic elastomers: Elsevier

  24. Yilgör I, Yilgör E, Wilkes GL (2015) Critical parameters in designing segmented polyurethanes and their effect on morphology and properties: A comprehensive review. Polymer 58:A1–A36

    Article  Google Scholar 

  25. Garrett J, Runt J, Lin J (2000) Microphase separation of segmented poly (urethane urea) block copolymers. Macromolecules 33(17):6353–6359

    Article  CAS  Google Scholar 

  26. Leung LM, Koberstein JT (1985) Small-angle scattering analysis of hard-microdomain structure and microphase mixing in polyurethane elastomers. J Polym Sci Polym Phys Ed 23(9):1883–1913

    Article  CAS  Google Scholar 

  27. Chen G, Liang Y, Xiang D, Wen S, Liu L (2017) Relationship between microstructure and dielectric property of hydroxyl-terminated butadiene–acrylonitrile copolymer-based polyurethanes. J Mater Sci 52(17):10321–10330

    Article  CAS  Google Scholar 

  28. Jincang S, Pengsheng L (2007) Effect of hard and soft segments on the heat storage properties of polyethylene glycol-based polyurethanes. Acta Polymerica Sinica 2:97–102

    Google Scholar 

  29. Verstraete G, Samaro A, Grymonpré W, Vanhoorne V, Van Snick B, Boone M et al (2018) 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm 536(1):318–325

    Article  CAS  PubMed  Google Scholar 

  30. Chen S, Hu J, Liu Y, Liem H, Zhu Y, Meng Q (2007) Effect of molecular weight on shape memory behavior in polyurethane films. Polym Int 56(9):1128–1134

    Article  CAS  Google Scholar 

  31. Zheng N, Fang Z, Zou W, Zhao Q, Xie T (2016) Inside Cover: Thermoset Shape‐Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation (Angew Chem Int Ed 38/2016). Angew Chem Int Ed 55(38):11304-

  32. Gostev AA, Karpenko AA (2018) Laktionov pp. Polyurethanes in cardiovascular prosthetics. Polym Bull 75:4311–4325

    Article  CAS  Google Scholar 

  33. Liu H-D, Wang Y, Yang M-B, He* Q (2014) Evaluation of hydrophobic polyurethane foam as sorbent material for oil spill recovery. J Macromol Sc Part A 51(1):88–100

  34. Xia W, Zhu N, Hou R, Zhong W, Chen M (2017) Preparation and characterization of fluorinated hydrophobic UV-crosslinkable thiol-ene polyurethane coatings. Coatings 7(8):117

    Article  Google Scholar 

  35. Zhang H, Zhang F, Wu Y (2020) Robust stretchable thermoplastic polyurethanes with long soft segments and steric semisymmetric hard segments. Ind Eng Chem Res 59(10):4483–4492

    Article  CAS  Google Scholar 

  36. Domańska A, Boczkowska A, Izydorzak-Woźniak M, Jaegermann Z, Grądzka-Dahlke M (2014) Polyurethanes from the crystalline prepolymers resistant to abrasive wear. Pol J Chem Technol 16(4):14–20

    Article  Google Scholar 

  37. Xu Y, Petrovic Z, Das S, Wilkes GL (2008) Morphology and properties of thermoplastic polyurethanes with dangling chains in ricinoleate-based soft segments. Polymer 49(19):4248–4258

    Article  CAS  Google Scholar 

  38. Das S, Yilgor I, Yilgor E, Inci B, Tezgel O, Beyer FL et al (2007) Structure–property relationships and melt rheology of segmented, non-chain extended polyureas: effect of soft segment molecular weight. Polymer 48(1):290–301

    Article  CAS  Google Scholar 

  39. Klinedinst DB, Yilgör I, Yilgör E, Zhang M, Wilkes GL (2012) The effect of varying soft and hard segment length on the structure–property relationships of segmented polyurethanes based on a linear symmetric diisocyanate, 1, 4-butanediol and PTMO soft segments. Polymer 53(23):5358–5366

    Article  CAS  Google Scholar 

  40. Cui Y, Wang H, Pan H, Yan T, Zong C (2021) The effect of mixed soft segment on the microstructure of thermoplastic polyurethane. J Appl Polym Sci 138(45):51346

    Article  CAS  Google Scholar 

  41. Xu S, Yu W, Jing M, Huang R, Zhang Q, Fu Q (2017) Largely enhanced stretching sensitivity of polyurethane/carbon nanotube nanocomposites via incorporation of cellulose nanofiber. J Phys Chem C 121(4):2108–2117

    Article  CAS  Google Scholar 

  42. Gupta T, Singh B, Teotia S, Katyal V, Dhakate S, Mathur R (2013) Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials. J Polym Res 20:1–7

    Article  Google Scholar 

  43. Wang T, Yu W-C, Zhou C-G, Sun W-J, Zhang Y-P, Jia L-C et al (2020) Self-healing and flexible carbon nanotube/polyurethane composite for efficient electromagnetic interference shielding. Compos B Eng 193:108015

    Article  CAS  Google Scholar 

  44. Shin B, Mondal S, Lee M, Kim S, Huh Y-I, Nah C (2021) Flexible thermoplastic polyurethane-carbon nanotube composites for electromagnetic interference shielding and thermal management. Chem Eng J 418:129282

    Article  CAS  Google Scholar 

  45. Feng D, Xu D, Wang Q, Liu P (2019) Highly stretchable electromagnetic interference (EMI) shielding segregated polyurethane/carbon nanotube composites fabricated by microwave selective sintering. J Mater Chem C 7(26):7938–7946

    Article  CAS  Google Scholar 

  46. Bertolini MC, Ramoa SD, Merlini C, Barra GM, Soares BG, Pegoretti A (2020) Hybrid composites based on thermoplastic polyurethane with a mixture of carbon nanotubes and carbon black modified with polypyrrole for electromagnetic shielding. Front Mater 7:174

    Article  Google Scholar 

  47. Li Y, Chen C, Zhang S, Ni Y, Huang J (2008) Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyacrylate composite films. Appl Surf Sci 254(18):5766–5771

    Article  CAS  Google Scholar 

  48. Hoang AS (2011) Electrical conductivity and electromagnetic interference shielding characteristics of multiwalled carbon nanotube filled polyurethane composite films. Adv Nat Sci Nanosci Nanotechno 2(2):025007

    Article  Google Scholar 

  49. Sharma S, Pathak AK, Singh VN, Teotia S, Dhakate S, Singh B (2018) Excellent mechanical properties of long multiwalled carbon nanotube bridged Kevlar fabric. Carbon 137:104–117

    Article  CAS  Google Scholar 

  50. Kumar S, Gupta TK, Varadarajan K (2019) Strong, stretchable and ultrasensitive MWCNT/TPU nanocomposites for piezoresistive strain sensing. Compos B Eng 177:107285

    Article  CAS  Google Scholar 

  51. Parnell S, Min K, Cakmak M (2003) Kinetic studies of polyurethane polymerization with Raman spectroscopy. Polymer 44(18):5137–5144

    Article  CAS  Google Scholar 

  52. Xia H, Song M (2005) Preparation and characterization of polyurethane–carbon nanotube composites. Soft Matter 1(5):386–394

    Article  CAS  PubMed  Google Scholar 

  53. Singh BK, Kar P, Shrivastava NK, Banerjee S, Khatua BB (2012) Electrical and mechanical properties of acrylonitrile-butadiene-styrene/multiwall carbon nanotube nanocomposites prepared by melt-blending. J Appl Polym Sci 124(4):3165–3174

    Article  CAS  Google Scholar 

  54. Kumar R, Sahoo S, Joanni E, Singh RK, Tan WK, Kar KK et al (2021) Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177:304–331

    Article  CAS  Google Scholar 

  55. Jyoti J, Basu S, Singh BP, Dhakate S (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos B Eng 83:58–65

    Article  CAS  Google Scholar 

  56. Nandi P, Das D (2023) Physico-mechanical, thermo-mechanical, and biodegradation properties of unidirectional green-composites from nettle (Girardinia diversifolia) yarn preform and poly (lactic acid) fibreweb. Eur Polym J 111860

  57. Pothan LA, Oommen Z, Thomas S (2003) Dynamic mechanical analysis of banana fiber reinforced polyester composites. Compos Sci Technol 63(2):283–293

    Article  CAS  Google Scholar 

  58. Oommen Z, Groeninckx G, Thomas S (2000) Dynamic mechanical and thermal properties of physically compatibilized natural rubber/poly (methyl methacrylate) blends by the addition of natural rubber-graft-poly (methyl methacrylate). J Polym Sci, Part B: Polym Phys 38(4):525–536

    Article  CAS  Google Scholar 

  59. Jyoti J, Singh BP, Arya AK, Dhakate S (2016) Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv 6(5):3997–4006

    Article  CAS  Google Scholar 

  60. Peng S, Iroh JO (2022) Dependence of the dynamic mechanical properties and structure of polyurethane-clay nanocomposites on the weight fraction of clay. J Compos Sci 6(6):173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The CSIR- National Physical Laboratory and Panjab University, Chandigarh for providing necessary facilities and infrastructure used in the present research. One of the authors thanks UGC for the DS Kothari fellowship (EN/18-19/0063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Pratap Singh.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 85 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyoti, J., Chauhan, G.S., Yang, S. et al. Stretchable and lightweight MWCNTs/TPU composites films with excellent electromagnetic interference shielding and dynamic mechanical properties. J Polym Res 30, 322 (2023). https://doi.org/10.1007/s10965-023-03690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03690-x

Keywords

Navigation