Skip to main content

Advertisement

Log in

Review on polymer degradation by selective solar concentration using up-conversion nanoparticles

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymers have become a major pollutant worldwide because their excessive use and poor disposal handling. Therefore, a system with selective solar concentration is proposed to solve this problem. This system is composed of a solar concentrator and a filter with upconversion nanoparticles made of rare earths. These materials can be obtained by the co-precipitation method. The materials are designed with a matrix of NaYF4 codoped by Yb3+ and Tm3+ so the upconversion process is carried out. This phenomenon helps to take advantage of the infrared radiation of the sun rays, converting it into UV radiation to improve the degradation efficiency in the solar concentrator system. The high density of the UV radiation concentrated on the polymer surface should promote a super accelerated degradation since the UV frequency is capable to break-down polymeric chains. It is expected that this strategy would be a sustainable option to reduce the impact of the polymeric waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this review.

References

  1. Namsheer N, Sekhar C (2021) Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. https://doi.org/10.1039/D0RA07800J

    Article  Google Scholar 

  2. Niyitanga E, Sarmad Q (2021) Plastic waste and its management strategies for environmental sustainability. C Stud Chem Environ Eng. https://doi.org/10.1016/j.cscee.2021.100142

    Article  Google Scholar 

  3. Young R, Lovell P (2013) Introduction to polymers. CRC Press, Boca Raton

    Google Scholar 

  4. Chandrinos A (2021) A Review of Polymers and Plastic High Index Optical Materials. J Mater Sci Res Rev 7:1–14

    Google Scholar 

  5. Pellis A, Malinconico M (2021) Renewable polymers and plastics: Performance beyond the green. New Biotech. https://doi.org/10.1016/j.nbt.2020.10.003

    Article  Google Scholar 

  6. Boucher J, Billard G (2019) The challenges of measuring plastic pollution. J F Actions 19:68–75

    Google Scholar 

  7. Stanton T, Kay P (2021) It’s the product not the polymer: Rethinking plastic pollution. WIREs Water. https://doi.org/10.1002/wat2.1490

    Article  Google Scholar 

  8. Nanda S, Berruti F (2020) Municipal solid waste management and landfilling technologies: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01100-y

    Article  Google Scholar 

  9. United States Environmental Protection Agency (2018) Advancing Sustainable Materials Management: Facts and Figures Report, Fact sheet, Pennsylvania. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/advancing-sustainable-materials-management. Accessed 01 Apr 2022

  10. Statista Research Department (2022) Producción mundial de plástico 1950-2020, Hamburg. https://es.statista.com/estadisticas/636183/produccion-mundial-de-plastico/

  11. De la Torre G (2019) Microplásticos en el medio marino: una problemática que abordar. Rev Cienc Tecnol 15:27–37

    Google Scholar 

  12. Schirinzi GF (2020) Chemical and ecotoxicological assessment of microplastics and emerging risks in the coastal environments. Ph D Thesis. Universitat de Barcelona, Barcelona

  13. Lau W, Shiran Y (2020) Evaluating scenarios toward zero plastic pollution. Sci. https://doi.org/10.1126/science.aba9475

    Article  PubMed  PubMed Central  Google Scholar 

  14. Vohlídal J (2021) Polymer degradation: a short review. Chem Teach International. https://doi.org/10.1515/cti-2020-0015

    Article  Google Scholar 

  15. Schwarz A, Ligthart T (2021) Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Manag. https://doi.org/10.1016/j.wasman.2020.12.020

    Article  PubMed  Google Scholar 

  16. Bilokur M, Gentle A (2020) Spectrally Selective Solar Absorbers based on Ta:SiO2 Cermets for Next-Generation Concentrated Solar-Thermal Applications. Energy Technol. https://doi.org/10.1002/ente.202000125

    Article  Google Scholar 

  17. Omazic A, Oreski G (2019) Relation between degradation of polymeric components in crystalline silicon PV module and climatic conditions: A literature review. Sol Energy Mater Sol Cell. https://doi.org/10.1016/j.solmat.2018.12.027

    Article  Google Scholar 

  18. Dincer I, Zamfirescu C (2016) Sustainable Hydrogen Production. Elsevier

    Google Scholar 

  19. Caryl CR, Helmick WE (1960) U.S. Patent No. 2,945,417. Washington, DC: U.S. Patent and Trademark Office

  20. Jorgensen GJ, Bingham C, Goggin R, Lewandowski AA, Netter JC (2000) U.S. Patent No. 6,073,500. Washington, DC: U.S. Patent and Trademark Office

  21. Qin J, Jiang J (2021) Sunlight tracking and concentrating accelerated weathering test applied in weatherability evaluation and service life prediction of polymeric materials: A review. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106940

    Article  Google Scholar 

  22. Wypycht G (2020) Handbook UV Degradation and Stabilization. Elsevier, Canada

    Google Scholar 

  23. Wang M (2011) Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanotechnol Biol Med Nanomed. https://doi.org/10.1016/j.nano.2011.02.013

    Article  Google Scholar 

  24. Chen B, Wang F (2020) Emerging Frontiers of Upconversion Nanoparticles. Trend Chem. https://doi.org/10.1016/j.trechm.2020.01.008

    Article  Google Scholar 

  25. Zhixiong C, Feiming L (2019) Novel Nanomaterials for Biomedical. Elsevier, Environmental and Energy Applications

    Google Scholar 

  26. Naccache R, Yu Q (2015) The Fluoride Host: Nucleation, Growth, and Upconversion of Lanthanide-Doped Nanoparticles. Advanced Optical Mat. https://doi.org/10.1002/adom.201400628

    Article  Google Scholar 

  27. Xiaohui Z (2019) Recent Progress of Rare-Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. Advanced Sci. https://doi.org/10.1002/advs.201901358

    Article  Google Scholar 

  28. Jiao Y, Ling C (2020) Recent Progress of Rare-Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications. Part Part Syst Charact. https://doi.org/10.1002/advs.201901358

    Article  Google Scholar 

  29. Zhang ZJ (2009) Optical Properties and Spectroscopy of Nanomaterials. World Scientific, Santa Cruz

    Book  Google Scholar 

  30. Xu R, Xu Y (2017) Modern Inorganic Synthetic Chemistry. Elsevier, Changchun

    Google Scholar 

  31. Yong X, Gan H (2020) Hydrothermal Synthesis of Nanomaterials. J Nanomat. https://doi.org/10.1155/2020/8917013

    Article  Google Scholar 

  32. Heuer A, Neus F (2019) The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00733

    Article  Google Scholar 

  33. Lu Y, Dekang X (2019) Regulation of morphologies and luminescence of β-NaGdF4:Ybc+, Er3+ upconversion nanoparticles by hydrothermal method and their dual-mode thermometric properties. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.09.209

    Article  Google Scholar 

  34. Rafique R, Baek S (2018) Morphological evolution of upconversion nanoparticles and their biomedical signal generation. Sci Rep. https://doi.org/10.1038/s41598-018-35513-1

    Article  PubMed  PubMed Central  Google Scholar 

  35. Atabaev T, Molkenova A (2019) Upconversion optical nanomaterials applied for photocatalysis and photovoltaics: Recent advances and perspectives. Front Mat Sci. https://doi.org/10.1007/s11706-019-0482-z

    Article  Google Scholar 

  36. Quraishi S, Plappert S (2019) Chemical versus physical grafting of photoluminescent amino-functional carbon dots onto transparent nematic nanocellulose gels and aerogels. Cellul. https://doi.org/10.1007/s10570-019-02619-2

    Article  Google Scholar 

  37. Xiao K, Xu Y, Cao X, Xu H, Li Y (2022) Chaper 18-Advanced characterization of membrane Surface fouling. 60 Years of the Loeb-Sourirajan Membr. https://doi.org/10.1016/B978-0-323-89977-2.00022-1

  38. Verma N, Kaur J, Dubey V, Dubey N, Ram T (2023) Luminescence properties of Y2SiO5 phosphors: A review. Inorg Chem Commun. https://doi.org/10.1016/j.inoche.2022.110234

    Article  Google Scholar 

  39. Pennycook SJ (2005) Transmission Electron Microscopy. Encycl of Condensed Matter Phys. https://doi.org/10.1016/B0-12-369401-9/00582-9

    Article  Google Scholar 

  40. Jia T, Chen G (2022) Lanthanide nanoparticles for near-infrared II theranostics. Coordination Chem Rev. https://doi.org/10.1016/j.ccr.2022.214724

    Article  Google Scholar 

  41. Kumar D, Verma K (2018) Recent advances in enhanced luminescence upconversion of lanthanide-doped NaYF4 phosphors. Condens Matter, Phys B. https://doi.org/10.1016/j.physb.2017.08.003

    Book  Google Scholar 

  42. Velazquez J, Balda R, Fernandez J (2021) Structural and optical properties in Tm3+/Tm3+–Yb3+ doped NaLuF4 glass-ceramics. J Appl Glass Sci. https://doi.org/10.1111/ijag.16322

    Article  Google Scholar 

  43. Wang W, Huang C, Zhang C (2018) Controlled synthesis of upconverting nanoparticles/ZnxCd1-xS yolk-shell nanoparticles for efficient photocatalysis driven by NIR light. Environ, Appl Catal B. https://doi.org/10.1016/j.apcatb.2017.11.037

    Book  Google Scholar 

  44. Wang Z, Meijerink A (2018) Concentration Quenching in Upconversion Nanocrystals. J Phys Chem. https://doi.org/10.1021/acs.jpcc.8b09371

    Article  Google Scholar 

  45. Ugemuge N, Parauha Y (2021) Energy Materials. Elsevier, Nagpur

    Google Scholar 

  46. Otanicar T, DeJarnette D (2016) Filtering light with nanoparticles: a review of optically selective particles and applications. Adv Opt Photonics. https://doi.org/10.1364/AOP.8.000541

    Article  Google Scholar 

  47. Ancona M, Antonucci V (2019) Thermal integration of a high-temperature co-electrolyzer and experimental methanator for Power-to-Gas energy storage system. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2019.02.057

    Article  Google Scholar 

  48. Fossa M, Boccalatte A (2021) Solar Fresnel modelling, geometry enhancement and 3D ray tracing analysis devoted to different energy efficiency definitions and applied to a real facility. Sol Energy. https://doi.org/10.1016/j.solener.2020.12.047

    Article  Google Scholar 

  49. Lai W, Rogach A (2017) Molecular design of upconversion nanoparticles for gene delivery. Chem Sci. https://doi.org/10.1039/C7SC02956J

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cho S, Uddin M (2017) Emerging Nanotechnologies in Rechargeable Energy Storage Systems. Elsevier, Miñano

    Google Scholar 

  51. Ogarev V, Rudoi V (2018) Gold Nanoparticles: Synthesis, Optical Properties, and Application. Appl Res, Inorg Mat. https://doi.org/10.1134/S2075113318010197

    Book  Google Scholar 

  52. Jin D, Xi P (2018) Nanoparticles for super-resolution microscopy and single-molecule tracking. Nat Method. https://doi.org/10.1038/s41592-018-0012-4

    Article  Google Scholar 

  53. Qian H, Guo H (2009) Mesoporous-Silica-Coated Up-Conversion Fluorescent Nanoparticles for Photodynamic Therapy. Small. https://doi.org/10.1002/smll.200900692

    Article  PubMed  Google Scholar 

  54. Zhang J, Mi C (2012) Synthesis of NaYF4:Yb/Er/Gd up-conversion luminescent nanoparticles and luminescence resonance energy transfer-based protein detection. Anal Biochem. https://doi.org/10.1016/j.ab.2011.11.008

    Article  PubMed  PubMed Central  Google Scholar 

  55. Selvin P, Rana T (1994) Luminescence Resonance Energy Transfer. J Am Chem Soc. https://doi.org/10.1021/ja00092a088

    Article  Google Scholar 

  56. Wu X, Zhang K (2017) Facile preparation of BiOX (X = Cl, Br, I) nanoparticles and up-conversion phosphors/BiOBr composites for efficient degradation of NO gas: Oxygen vacancy effect and near infrared light responsive mechanism. Chem Eng J. https://doi.org/10.1016/j.cej.2017.05.044

  57. González E, Sánchez M (2014) Desarrollo de un concentrador solar para la degradación acelerada de polímeros de desecho. Ideas en Ciencia 41:47–58

    Google Scholar 

  58. Rabek JF (1995) Polymer Photodegradation. Mechanisms and Experimental Methods. Chaptman & Hall, Chapter 2, 26. https://doi.org/10.1007/978-94-011-1274-1https://doi.org/10.1007/978-94-011-1274-1

  59. Rossi T, Escobedo J (2018) Global, diffuse and direct solar radiation of the infrared spectrum in Botucatu / SP / Brazil. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2017.09.030

    Article  Google Scholar 

  60. Cen H, He Y (2007) Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2006.09.003

    Article  Google Scholar 

  61. Wu S, Lv J (2017) Photocatalytic degradation of microcystin-LR with a nanostructured photocatalyst based on upconversion nanoparticles@TiO2 composite under simulated solar lights. Sci Rep. https://doi.org/10.1038/s41598-017-14746-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miriam Sánchez-Pozos or Mónica Corea.

Ethics declarations

Conflicts of interests

There is no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda-Sánchez, R., Martinez-Calvo, E.A., Sánchez-Pozos, M. et al. Review on polymer degradation by selective solar concentration using up-conversion nanoparticles. J Polym Res 30, 296 (2023). https://doi.org/10.1007/s10965-023-03689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03689-4

Keywords

Navigation