Skip to main content
Log in

Electrospun nanocomposite membranes for wastewater treatment: γ-alumina nanoparticle incorporated polyvinyl chloride/thermoplastic polyurethane/polycarbonate membranes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, the nanocomposite membranes were electrospun using conventional polymers, including polyvinyl chloride (PVC), thermoplastic polyurethane (TPU) and polycarbonate (PC) at different levels of incorporation of the γ-alumina nanoparticles (1, 3 and 5 wt.%). Morphological investigation using SEM images showed that the diameters of the nanofibers were in the range of 155-491 nm. The energy dispersive spectroscopy (EDS) analysis and FTIR test revealed the presence of the γ-alumina nanoparticles (NPs) and characteristic chemical groups in electrospun nanocomposite membranes (ENCMs). The contact angle test showed that the hydrophilic features of the membranes improved with the incorporation of γ-alumina NPs with the decrease of contact angle from 80° to 27°. Mechanical tests exhibited a drop in tensile strength and strain of the nanocomposite membranes by adding more γ-alumina NPs to the neat membrane. Filtration efficiency of ENCMs was evaluated using the submerged system with the humic acid (HA) solution. Results showed that the permeation flux of the membranes increased with an increase in the content of the γ-alumina NPs (from 49 to 102 L.m-2.h-1). The irreversible fouling ratio (IFR) of the membranes was also improved by increase in the content of the γ-alumina NPs up to 3 wt.%. Results also demonstrated the better anti-fouling performance for the blended nanofiber membrane with 3 wt.% of the nanoparticles (flux recovery ratio, FRR=94.4 %). HA rejection test also proved the enhanced foulant removal (99.6 %) of ENCM containing 3 wt.% γ-alumina NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Tramblay Y, Koutroulis A, Samaniego L et al (2020) Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci Rev 210:103348. https://doi.org/10.1016/j.earscirev.2020.103348

    Article  Google Scholar 

  2. Sconiers WB, Rowland DL, Eubanks MD (2020) Pulsed drought: the effects of varying water stress on plant physiology and predicting herbivore response. Crop Sci 60:2543–2561. https://doi.org/10.1002/csc2.20235

    Article  CAS  Google Scholar 

  3. Tortajada C (2020) Contributions of recycled wastewater to clean water and sanitation Sustainable Development Goals. npj Clean Water 3:22. https://doi.org/10.1038/s41545-020-0069-3

    Article  CAS  Google Scholar 

  4. Drechsel P, Qadir M, Baumann J (2022) Water reuse to free up freshwater for higher-value use and increase climate resilience and water productivity. Irrig Drain 71:100–109. https://doi.org/10.1002/ird.2694

    Article  Google Scholar 

  5. Ariaeenejad S, Motamedi E, Hosseini Salekdeh G (2021) Application of the immobilized enzyme on magnetic graphene oxide nano-carrier as a versatile bi-functional tool for efficient removal of dye from water. Bioresour Technol 319:124228. https://doi.org/10.1016/j.biortech.2020.124228

    Article  CAS  PubMed  Google Scholar 

  6. Yu S, Tang H, Zhang D, Wang S, Gang MQ, Song D, Fu, Baowei Hu XW (2021) MXenes as emerging nanomaterials in water purification and environmental remediation. Sci Total Environ 811:152280. https://doi.org/10.1016/j.scitotenv.2021.152280

    Article  CAS  PubMed  Google Scholar 

  7. Saffari R, Shariatinia Z, Jourshabani M (2020) Synthesis and photocatalytic degradation activities of phosphorus containing ZnO microparticles under visible light irradiation for water treatment applications. Environ Pollut 259:113902. https://doi.org/10.1016/j.envpol.2019.113902

    Article  CAS  PubMed  Google Scholar 

  8. Worch E (2021) Adsorption Technology in Water Treatment. De Gruyter, Dresden

    Book  Google Scholar 

  9. Cui H, Huang X, Yu Z et al (2020) Application progress of enhanced coagulation in water treatment. RSC Adv 10:20231–20244. https://doi.org/10.1039/d0ra02979c

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Pompa-Monroy DA, Iglesias AL, Dastager SG et al (2022) Comparative study of polycaprolactone electrospun fibers and casting films enriched with carbon and nitrogen sources and their potential use in water bioremediation. Membr (Basel) 12:327. https://doi.org/10.3390/membranes12030327

    Article  CAS  Google Scholar 

  11. Işık C, Saraç N, Teke M, Uğur A (2021) A new bioremediation method for removal of wastewater containing oils with high oleic acid composition:Acinetobacter haemolyticuslipase immobilized on eggshell membrane with improved stabilities. New J Chem 45:1984–1992. https://doi.org/10.1039/d0nj05175f

    Article  CAS  Google Scholar 

  12. Dehghani Y, Honarvar B, Azdarpour A, Nabipour M (2021) Treatment of wastewater by a combined technique of adsorption, electrocoagulation followed by membrane separation. Adv Environ Technol 7:171–183. https://doi.org/10.22104/AET.2021.5133.1394

    Article  Google Scholar 

  13. Oliveira GA, Machado ÊL, Knoll RS et al (2022) Combined system for wastewater treatment: ozonization and coagulation via tannin-based agent for harvesting microalgae by dissolved air flotation. Environ Technol (United Kingdom) 43:1370–1380. https://doi.org/10.1080/09593330.2020.1830181

    Article  CAS  Google Scholar 

  14. Ezugbe EO, Rathilal S (2020) Membrane technologies in wastewater treatment: a review. Membr (Basel) 10:89. https://doi.org/10.3390/membranes10050089

    Article  CAS  Google Scholar 

  15. Reddy VS, Tian Y, Zhang C et al (2021) A review on electrospun nanofibers based advanced applications: from health care to energy devices. Polym (Basel) 13:3746. https://doi.org/10.3390/polym13213746

    Article  CAS  Google Scholar 

  16. HMTShirazi R, Mohammadi T, Asadi AA, Tofighy MA (2022) Electrospun nanofiber affinity membranes for water treatment applications: a review. J Water Process Eng 47:102795. https://doi.org/10.1016/j.jwpe.2022.102795

    Article  Google Scholar 

  17. Pervez MN, Mishu MR, Talukder ME et al (2022) Electrospun nanofiber membranes for the control of micro/nanoplastics in the environment. Water Emerg Contam Nanoplastics 1:10. https://doi.org/10.20517/wecn.2022.05

    Article  Google Scholar 

  18. Su Y, Fan T, Cui W et al (2022) Advanced electrospun nanofibrous materials for efficient oil/water separation. Adv Fiber Mater 4:938–958. https://doi.org/10.1007/s42765-022-00158-3

    Article  CAS  Google Scholar 

  19. Hartati S, Zulfi A, Maulida PYD et al (2022) Synthesis of electrospun PAN/TiO2/Ag nanofibers membrane as potential air filtration media with photocatalytic activity. ACS Omega 7:10516–10525. https://doi.org/10.1021/acsomega.2c00015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Li N, Wang W, Zhu L et al (2021) A novel electro-cleanable PAN-ZnO nanofiber membrane with superior water flux and electrocatalytic properties for organic pollutant degradation. Chem Eng J 421:127857. https://doi.org/10.1016/j.cej.2020.127857

    Article  CAS  Google Scholar 

  21. Roche R, Yalcinkaya F (2019) Electrospun polyacrylonitrile nanofibrous membranes for point-of-use water and air cleaning. ChemistryOpen 8:97–103. https://doi.org/10.1002/open.201800267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Baby T, Jose TE, John CTA, Thomas R (2021) A facile approach for the preparation of polycarbonate nanofiber mat with filtration capability. Polym Bull 78:3363–3381. https://doi.org/10.1007/s00289-020-03266-5

    Article  CAS  Google Scholar 

  23. Alarifi IM, Alharbi AR, Khan MN et al (2018) Water treatment using electrospun PVC / PVP nanofibers as filter medium. J Mater Sci Res 2:43–49. https://doi.org/10.18689/ijmsr-1000107

    Article  Google Scholar 

  24. Khan WS, Khan NU, Janjua MM (2019) Wastewater treatment with PVC electrospun nanofibrous membrane. In: 2019 Advances in Science and Engineering Technology International Conferences (ASET). IEEE, Dubai, United Arab Emirates

  25. Ghiasvand S, Rahmani A, Samadi M et al (2021) Application of polystyrene nanofibers filled with sawdust as separator pads for separation of oil spills. Process Saf Environ Prot 146:161–168. https://doi.org/10.1016/j.psep.2020.08.044

    Article  CAS  Google Scholar 

  26. Sundaran SP, Reshmi CR, Sujith A (2018) Tailored design of polyurethane based fouling-tolerant nanofibrous membrane for water treatment. New J Chem 42:1958–1972. https://doi.org/10.1039/c7nj03997b

    Article  CAS  Google Scholar 

  27. Jiříček T, Komárek M, Lederer T (2017) Polyurethane nanofiber membranes for waste water treatment by membrane distillation. J Nanotechnol 2017:7143055. https://doi.org/10.1155/2017/7143035

    Article  CAS  Google Scholar 

  28. Hu X, Chen X, Giagnorio M et al (2022) Beaded electrospun polyvinylidene fluoride (PVDF) membranes for membrane distillation (MD). J Memb Sci 661:120850. https://doi.org/10.1016/j.memsci.2022.120850

    Article  CAS  Google Scholar 

  29. Nie Y, Zhang S, He Y et al (2022) One-step modification of electrospun PVDF nanofiber membranes for effective separation of oil–water emulsion. New J Chem 46:4734–4745. https://doi.org/10.1039/d1nj05436h

    Article  CAS  Google Scholar 

  30. Pervez MN, Talukder ME, Mishu MR et al (2022) One-step fabrication of novel polyethersulfone-based composite electrospun nanofiber membranes for food industry wastewater treatment. Membr (Basel) 12:413. https://doi.org/10.3390/membranes12040413

    Article  CAS  Google Scholar 

  31. Nazemidashtarjandi S, Mousavi SA, Bastani D (2017) Preparation and characterization of polycarbonate/thermoplastic polyurethane blend membranes for wastewater filtration. J Water Process Eng 16:170–182. https://doi.org/10.1016/J.JWPE.2017.01.004

    Article  Google Scholar 

  32. Quoc Pham L, Uspenskaya MV, Olekhnovich RO, Olvera Bernal RA (2021) A review on electrospun PVC nanofibers: fabrication, properties, and application. Fibers 9:12. https://doi.org/10.3390/fib9020012

    Article  CAS  Google Scholar 

  33. Yekrang J, Mohseni L, Etemadi H (2023) Water treatment using PVC/TPU/PC electrospun nanofiber membranes. Fibers Polym 24:907–920. https://doi.org/10.1007/s12221-023-00100-3

    Article  CAS  Google Scholar 

  34. Ahmad T, Guria C (2022) Progress in the modification of polyvinyl chloride (PVC) membranes: a performance review for wastewater treatment. J Water Process Eng 45:102466. https://doi.org/10.1016/j.jwpe.2021.102466

    Article  Google Scholar 

  35. Yong M, Zhang Y, Sun S, Liu W (2019) Properties of polyvinyl chloride (PVC) ultrafiltration membrane improved by lignin: hydrophilicity and anti-fouling. J Memb Sci 575:50–59. https://doi.org/10.1016/J.MEMSCI.2019.01.005

    Article  CAS  Google Scholar 

  36. Behboudi A, Jafarzadeh Y, Yegani R (2017) Polyvinyl chloride/polycarbonate blend ultrafiltration membranes for water treatment. J Memb Sci 534:18–24. https://doi.org/10.1016/j.memsci.2017.04.011

    Article  CAS  Google Scholar 

  37. Julien TCM, Subramanyam MD, Katakam HC et al (2019) Ultrasoft polycarbonate polyurethane nanofibers made by electrospinning: fabrication and characterization. Polym Eng Sci 59:838–845. https://doi.org/10.1002/pen.25021

    Article  CAS  Google Scholar 

  38. Chen R, Zhang H, Wang M et al (2021) Thermoplastic polyurethane nanofiber membrane based air filters for efficient removal of ultrafine particulate matter PM0.1. ACS Appl Nano Mater 4:182–189. https://doi.org/10.1021/acsanm.0c02484

    Article  CAS  Google Scholar 

  39. Liang W, Xu Y, Li X et al (2019) Transparent polyurethane nanofiber air filter for high-efficiency PM2.5 capture. Nanoscale Res Lett 14:361. https://doi.org/10.1186/s11671-019-3199-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Chen H, Huang M, Liu Y et al (2020) Functionalized electrospun nanofiber membranes for water treatment: a review. Sci Total Environ 739:139944. https://doi.org/10.1016/j.scitotenv.2020.139944

    Article  CAS  PubMed  Google Scholar 

  41. Akther N, Phuntsho S, Chen Y et al (2019) Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J Memb Sci 584:20–45. https://doi.org/10.1016/j.memsci.2019.04.064

    Article  CAS  Google Scholar 

  42. Huh JY, Lee J, Bukhari SZA et al (2020) Development of TiO2-coated YSZ/silica nanofiber membranes with excellent photocatalytic degradation ability for water purification. Sci Rep 10:17811. https://doi.org/10.1038/s41598-020-74637-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Marinho BA, de Souza SMAGU, de Souza AAU, Hotza D (2021) Electrospun TiO2 nanofibers for water and wastewater treatment: a review. J Mater Sci 56:5428–5448. https://doi.org/10.1007/s10853-020-05610-6

    Article  CAS  Google Scholar 

  44. Sun H, Feng J, Song Y et al (2022) Preparation of the carbonized zif – 8@PAN nanofiber membrane for cadmium ion adsorption. Polym (Basel) 14:2523. https://doi.org/10.3390/polym14132523

    Article  CAS  Google Scholar 

  45. Zhang M, Ma W, Cui J et al (2020) Hydrothermal synthesized UV-resistance and transparent coating composited superoloephilic electrospun membrane for high efficiency oily wastewater treatment. J Hazard Mater 383:121152. https://doi.org/10.1016/j.jhazmat.2019.121152

    Article  CAS  PubMed  Google Scholar 

  46. Talukder ME, Pervez MN, Jianming W et al (2022) Ag nanoparticles immobilized sulfonated polyethersulfone/polyethersulfone electrospun nanofiber membrane for the removal of heavy metals. Sci Rep 12:5814. https://doi.org/10.1038/s41598-022-09802-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Jang W, Yun J, Park Y et al (2020) Polyacrylonitrile nanofiber membrane modified with ag/go composite for water purification system. Polym (Basel) 12:2441. https://doi.org/10.3390/polym12112441

    Article  CAS  Google Scholar 

  48. Deepa K, Arthanareeswaran G (2022) Influence of various shapes of alumina nanoparticle in integrated polysulfone membrane for separation of lignin from woody biomass and salt rejection. Environ Res 209:112820. https://doi.org/10.1016/j.envres.2022.112820

    Article  CAS  PubMed  Google Scholar 

  49. Targol Hashemi M, Reza Mehrnia SG (2022) Influence of alumina nanoparticles on the performance of polyacrylonitrile membranes in MBR. J Environ Heal Sci Eng 20:375–384. https://doi.org/10.1007/s40201-021-00784-w

    Article  CAS  Google Scholar 

  50. Etemadi H, Afsharkia S, Zinatloo-Ajabshir S, Shokri E (2021) Effect of alumina nanoparticles on the anti-fouling properties of polycarbonate-polyurethane blend ultrafiltration membrane for water treatment. Polym Eng Sci 61:2364–2375. https://doi.org/10.1002/pen.25764

    Article  CAS  Google Scholar 

  51. Amusa AA, Ahmad AL, Adewole JK (2020) Mechanism and compatibility of pretreated lignocellulosic biomass and polymeric mixed matrix membranes: a review. Membr (Basel) 10:370–398. https://doi.org/10.3390/membranes10120370

    Article  CAS  Google Scholar 

  52. Xu J, Tazawa N, Kumagai S et al (2018) Simultaneous recovery of high-purity copper and polyvinyl chloride from thin electric cables by plasticizer extraction and ball milling. RSC Adv 8:6893–6903. https://doi.org/10.1039/c8ra00301g

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Idris A, Man Z, Maulud AS, Khan MS (2017) Effects of phase separation behavior on morphology and performance of polycarbonate membranes. Membr (Basel) 7:21. https://doi.org/10.3390/membranes7020021

    Article  CAS  Google Scholar 

  54. Gallu R, Méchin F, Dalmas F et al (2020) On the use of solubility parameters to investigate phase separation-morphology-mechanical behavior relationships of TPU. Polym (Guildf) 207. https://doi.org/10.1016/j.polymer.2020.122882

  55. Amin NAAM, Mokhter MA, Salamun N et al (2023) Anti-fouling electrospun organic and inorganic nanofiber membranes for wastewater treatment. South Afr J Chem Eng 44:302–317. https://doi.org/10.1016/j.sajce.2023.02.002

    Article  Google Scholar 

  56. Tang Y, Cai Z, Sun X et al (2022) Electrospun nanofiber-based membranes for water treatment. Polym 14:2004. https://doi.org/10.3390/polym14102004

    Article  CAS  Google Scholar 

  57. Hulsey S, Absar S, Choi H (2017) Comparative study of polymer dissolution techniques for electrospinning. Procedia Manuf 10:652–661. https://doi.org/10.1016/j.promfg.2017.07.010

    Article  Google Scholar 

  58. Fang B, Ning F, Hu S et al (2020) The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: a molecular dynamics simulation study. RSC Adv 10:31027–31038. https://doi.org/10.1039/d0ra04088f

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Kang SP, Lee D, Lee JW (2020) Anti-agglomeration effects of biodegradable surfactants from natural sources on natural gas hydrate formation. Energies 13:1107. https://doi.org/10.3390/en13051107

    Article  CAS  Google Scholar 

  60. Naullage PM, Bertolazzo AA, Molinero V (2019) How do surfactants control the agglomeration of clathrate hydrates? ACS Cent Sci 5:428–439. https://doi.org/10.1021/acscentsci.8b00755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Mamun A, Sabantina L, Klöcker M et al (2022) Electrospinning nanofiber mats with magnetite nanoparticles using various needle-based techniques. Polym (Basel) 14:533. https://doi.org/10.3390/polym14030533

    Article  CAS  Google Scholar 

  62. Glaubitz C, Rothen-Rutishauser B, Lattuada M et al (2022) Designing the ultrasonic treatment of nanoparticle-dispersions via machine learning. Nanoscale 14:12940–12950. https://doi.org/10.1039/d2nr03240f

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Pradhan S, Hedberg J, Blomberg E et al (2016) Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J Nanoparticle Res 18:285. https://doi.org/10.1007/s11051-016-3597-5

    Article  CAS  Google Scholar 

  64. Karbowniczek JE, Ura DP, Stachewicz U (2022) Nanoparticles distribution and agglomeration analysis in electrospun fiber based composites for desired mechanical performance of poly(3-hydroxybuty-rate-co-3-hydroxyvalerate (PHBV) scaffolds with hydroxyapatite (HA) and titanium dioxide (TiO2) towards me. Compos Part B Eng 241:110011. https://doi.org/10.1016/j.compositesb.2022.110011

    Article  CAS  Google Scholar 

  65. Shojaeiarani J, Bajwa D, Holt G (2020) Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion. Nanocomposites 6:41–46. https://doi.org/10.1080/20550324.2019.1710974

    Article  CAS  Google Scholar 

  66. Sandhya M, Ramasamy D, Sudhakar K et al (2021) Ultrasonication an intensifying tool for preparation of stable nanofluids and study the time influence on distinct properties of graphene nanofluids – A systematic overview. Ultrason Sonochem 73:105479. https://doi.org/10.1016/j.ultsonch.2021.105479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Sharifi A, Khorasani SN, Borhani S, Neisiany RE (2018) Alumina reinforced nanofibers used for exceeding improvement in mechanical properties of the laminated carbon/epoxy composite. Theor Appl Fract Mech 96:193–201. https://doi.org/10.1016/j.tafmec.2018.05.001

    Article  CAS  Google Scholar 

  68. Zdraveva E, Mijovic B, Govorcin Bajsic E, Grozdanic V (2018) The efficacy of electrospun polyurethane fibers with TiO2 in a real time weathering condition. Text Res J 88:2445–2453. https://doi.org/10.1177/0040517517723025

    Article  CAS  Google Scholar 

  69. Kumar R, Kumar M, Awasthi K (2016) Functionalized Pd-decorated and aligned MWCNTs in polycarbonate as a selective membrane for hydrogen separation. Int J Hydrogen Energy 41:23057–23066. https://doi.org/10.1016/j.ijhydene.2016.09.008

    Article  CAS  Google Scholar 

  70. Atrak K, Ramazani A, Taghavi S (2018) Green synthesis of amorphous and gamma aluminum oxide nanoparticles by tragacanth gel and comparison of their photocatalytic activity for the degradation of organic dyes. J Mater Sci Mater Electron 29:8347–8353. https://doi.org/10.1007/s10854-018-8845-2

    Article  CAS  Google Scholar 

  71. Zhu L, Sun C, Chen L et al (2017) Influences of NH4F additive and calcination time on the morphological evolution of α-Al2O3 from a milled γ-Al2O3 precursor. Z für Naturforsch B 72:665–670

    Article  CAS  Google Scholar 

  72. Gohari B, Abu-Zahra N (2018) Polyethersulfone membranes prepared with 3-aminopropyltriethoxysilane modified alumina nanoparticles for Cu(II) removal from water. ACS Omega 3:10154–10162. https://doi.org/10.1021/acsomega.8b01024

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Etemadi H, Qazvini H (2021) Investigation of alumina nanoparticles role on the critical flux and performance of polyvinyl chloride membrane in a submerged membrane system for the removal of humic acid. Polym Bull 78:2645–2662. https://doi.org/10.1007/s00289-020-03234-z

    Article  CAS  Google Scholar 

  74. Elumalai P, Parthipan P, Huang M et al (2021) Enhanced biodegradation of hydrophobic organic pollutants by the bacterial consortium: impact of enzymes and biosurfactants. Environ Pollut 289:117956. https://doi.org/10.1016/j.envpol.2021.117956

    Article  CAS  PubMed  Google Scholar 

  75. Ruan H, Li B, Ji J et al (2018) Preparation and characterization of an amphiphilic polyamide nanofiltration membrane with improved anti-fouling properties by two-step surface modification method. RSC Adv 8:13353–13363. https://doi.org/10.1039/c8ra00637g

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Yuan XS, Liu W, Zhu WY, Zhu XX (2020) Enhancement in flux and anti-fouling properties of polyvinylidene fluoride/polycarbonate blend membranes for water environmental improvement. ACS Omega 5:30201–30209. https://doi.org/10.1021/acsomega.0c04656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Malczewska B, Lochyński P, Charazińska S et al (2023) Electrospun silica-polyacrylonitrile nanohybrids for water treatments. Membr (Basel) 13:72. https://doi.org/10.3390/membranes13010072

    Article  CAS  Google Scholar 

  78. Wang Y, Górecki RP, Stamate E et al (2019) Preparation of super-hydrophilic polyphenylsulfone nanofiber membranes for water treatment. RSC Adv 9:278–286. https://doi.org/10.1039/C8RA06493H

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Shakiba M, Nabavi SR, Emadi H, Faraji M (2021) Development of a superhydrophilic nanofiber membrane for oil/water emulsion separation via modification of polyacrylonitrile/polyaniline composite. Polym Adv Technol 32:1301–1316. https://doi.org/10.1002/pat.5178

    Article  CAS  Google Scholar 

  80. Yalcinkaya F, Siekierka A, Bryjak M (2017) Preparation of fouling-resistant nanofibrous composite membranes for separation of oily wastewater. Polym (Basel) 9:679. https://doi.org/10.3390/polym9120679

    Article  CAS  Google Scholar 

  81. Li YJ, Chen GE, Xie HY et al (2022) Increasing the hydrophilicity and anti-fouling properties of polyvinylidene fluoride membranes by doping novel nano-hybrid ZnO@ZIF-8 nanoparticles for 4-nitrophenol degradation. Polym Test 113:107613. https://doi.org/10.1016/j.polymertesting.2022.107613

    Article  CAS  Google Scholar 

  82. Moradi G, Zinadini S (2020) A high flux graphene oxide nanoparticles embedded in PAN nanofiber microfiltration membrane for water treatment applications with improved anti-fouling performance. Iran Polym J (English Ed 29:827–840. https://doi.org/10.1007/s13726-020-00842-4

    Article  CAS  Google Scholar 

  83. Sahu A, Dosi R, Kwiatkowski C et al (2023) Advanced polymeric nanocomposite membranes for water and wastewater treatment: a comprehensive review. Polym (Basel) 15:540. https://doi.org/10.3390/polym15030540

    Article  CAS  Google Scholar 

  84. Ashraf MA, Peng W, Zare Y, Rhee KY (2018) Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett 13:214. https://doi.org/10.1186/s11671-018-2624-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Charlton AJ, Lian B, Blandin G et al (2020) Impact of FO operating pressure and membrane tensile strength on draw-channel geometry and resulting hydrodynamics. Membr (Basel) 10:111. https://doi.org/10.3390/membranes10050111

    Article  CAS  Google Scholar 

  86. Anoar Ali Khan SB (2021) Membrane-based hybrid processes for wastewater treatment. Elsevier

  87. Pal P (2020) Membrane-based technologies for environmental pollution control. Membr Technol Environ Pollut Control 1–763. https://doi.org/10.1016/C2018-0-00072-9

  88. Nayak SK, Dutta K, Gohil JM (2022) Advancement in polymer-based membranes for water remediation

  89. Liu F, Wang L, Li D et al (2019) A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification. RSC Adv 9:35417–35428. https://doi.org/10.1039/c9ra07114h

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Peng J, Su Y, Shi Q et al (2011) Protein fouling resistant membrane prepared by amphiphilic pegylated polyethersulfone. Bioresour Technol 102:2289–2295. https://doi.org/10.1016/j.biortech.2010.10.045

    Article  CAS  PubMed  Google Scholar 

  91. Peldszus S, Hallé C, Peiris RH et al (2011) Reversible and irreversible low-pressure membrane foulants in drinking water treatment: identification by principal component analysis of fluorescence EEM and mitigation by biofiltration pretreatment. Water Res 45:5161–5170. https://doi.org/10.1016/j.watres.2011.07.022

    Article  CAS  PubMed  Google Scholar 

  92. Vatanpour V, Madaeni SS, Moradian R et al (2012) Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Sep Purif Technol 90:69–82. https://doi.org/10.1016/j.seppur.2012.02.014

    Article  CAS  Google Scholar 

  93. Mahmodi G, Ronte A, Dangwal S et al (2022) Improving anti-fouling property of alumina microfiltration membranes by using atomic layer deposition technique for produced water treatment. Desalination 523:115400. https://doi.org/10.1016/j.desal.2021.115400

    Article  CAS  Google Scholar 

  94. Breite D, Went M, Prager A, Schulze A (2016) The critical zeta potential of polymer membranes: how electrolytes impact membrane fouling. RSC Adv 6:98180–98189. https://doi.org/10.1039/c6ra19239d

    Article  CAS  Google Scholar 

  95. Ghezelgheshlaghi S, Mehrnia MR, Homayoonfal M, Montazer-Rahmati MM (2018) Al2O3/poly acrylonitrile nanocomposite membrane: from engineering design of pores to efficient biological macromolecules separation. J Porous Mater 25:1161–1181. https://doi.org/10.1007/s10934-017-0527-6

    Article  CAS  Google Scholar 

  96. Plisko TV, Bildyukevich AV, Burts KS et al (2020) Modification of polysulfone ultrafiltration membranes via addition of anionic polyelectrolyte based on acrylamide and sodium acrylate to the coagulation bath to improve anti-fouling performance in water treatment. Membr (Basel) 10:264. https://doi.org/10.3390/membranes10100264

    Article  CAS  Google Scholar 

  97. Teow YH, Ooi BS, Ahmad AL (2017) Study on PVDF-TiO2 mixed-matrix membrane behaviour towards humic acid adsorption. J Water Process Eng 15:99–106. https://doi.org/10.1016/j.jwpe.2016.04.005

    Article  Google Scholar 

  98. Arif Z, Sethy NK, Kumari L et al (2019) Anti-fouling behaviour of PVDF/TiO2 composite membrane: a quantitative and qualitative assessment. Iran Polym J (English Ed 28:301–312. https://doi.org/10.1007/s13726-019-00700-y

    Article  CAS  Google Scholar 

  99. Etemadi H, Fonouni M, Yegani R (2020) Investigation of anti-fouling properties of polypropylene/TiO2 nanocomposite membrane under different aeration rate in membrane bioreactor system. Biotechnol Rep 25:e00414. https://doi.org/10.1016/j.btre.2019.e00414

    Article  Google Scholar 

  100. Rabiee H, Farahani MHDA, Vatanpour V (2014) Preparation and characterization of emulsion poly(vinyl chloride) (EPVC)/TiO2 nanocomposite ultrafiltration membrane. J Memb Sci 472:185–193. https://doi.org/10.1016/j.memsci.2014.08.051

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Yekrang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships which could influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 7402 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yekrang, J., Etemadi, H. Electrospun nanocomposite membranes for wastewater treatment: γ-alumina nanoparticle incorporated polyvinyl chloride/thermoplastic polyurethane/polycarbonate membranes. J Polym Res 30, 294 (2023). https://doi.org/10.1007/s10965-023-03672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03672-z

Keywords

Navigation