Skip to main content
Log in

Exploring ordered structures by varying symmetric interaction parameters of non-frustrated ABCBA linear pentablock terpolymers in the melt

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The phase behavior of ABCBA linear pentablock terpolymers is investigated by using the 3-dimensional self-consistent field theory. In this study, phase diagrams are constructed and used to discuss how the self-assembled morphologies are influenced by the compositions and the Flory–Huggins interaction parameters (χ) among the three components by decreasing symmetric χN value (segregation strength, where N is the total degree of polymerization) from 80 to 30. In the segregation regime of χN from 80 to 50, the microstructures formed by ABCBA linear pentablock terpolymers according to the compositions of the components are very similar. In particular, diverse complex network structures (e.g. diamond, hexagonally perforated lamellae, Fddd, and gyroid) and binary crystalline phases of cylinders and spheres can be observed. This is mainly due to the fact that the two free ends of the A block in the ABCBA linear copolymer allow the macromolecules to relieve packing frustrations. However, in the intermediate system with symmetric χN < 50, the aggregation of each components becomes weaker so that behavior of the pentablock chains is similar to triblock and diblock chains. Accordingly, the diamond and hexagonally perforated lamellae tend to transfer to gyroid and Fddd observed in linear diblock and triblock cases. Moreover, by altering the composition ratio of A/C and the length of the B block, alternatively arranged A/C spheres resemble ionic and metallic crystals (e.g. NaCl, CsCl, Li3Bi, and Nb3Sn) and alternating A/C cylinders with coordination numbers of A/C (equal to 4/4, 6/3, and 4/2) can be still observed by decreasing symmetric χN to 40 in the intermediate regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu H, Gopinadhan M, Osuji CO (2014) Soft Matter 10:3867–3889

    Article  CAS  PubMed  Google Scholar 

  2. Xu C, Chen C, Jiang J, Zhao C, Ma Y, Yang W (2022) ACS Appl Polym Mater 4:7363–7372

    Article  CAS  Google Scholar 

  3. Liu S, Yang Y, Zhang L, Xu J, Zhu J (2020) J Mater Chem C 8:16633–16647

    Article  CAS  Google Scholar 

  4. Li M, Ober CK (2006) Mater Today 9:30–39

    Article  CAS  Google Scholar 

  5. Rahman ZU, Wei N, Li ZX, Sun WX, Wang DA (2017) New J Chem 41:14122–14129

    Article  CAS  Google Scholar 

  6. Cho EB, Choi E, Yang S, Jaroniec M (2018) J Colloid Interface Sci 528:124–134

    Article  CAS  PubMed  Google Scholar 

  7. Sunwoo Y, Karunakaran G, Cho EB (2021) Ceram Int 47:13351–13362

    Article  CAS  Google Scholar 

  8. Kataoka K, Harada A, Nagasaki Y (2012) Adv Drug Deliv Rev 64:37–48

    Article  Google Scholar 

  9. Akash MSH, Rehman K, Chen S (2014) Polym Rev 54:573–597

    Article  CAS  Google Scholar 

  10. Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO (2017) J Control Release 258:226–253

    Article  CAS  PubMed  Google Scholar 

  11. Tyler CA, Morse DC (2005) Phys Rev Lett 94:208302

    Article  PubMed  Google Scholar 

  12. Matsen MW (2012) Macromolecules 45:2161–2165

    Article  CAS  Google Scholar 

  13. Lee S, Leighton C, Bates FS (2014) Proc Natl Acad Sci USA 111:17723–17731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie N, Li WH, Qiu F, Shi AC (2014) ACS Macro Lett 3:906–910

    Article  CAS  PubMed  Google Scholar 

  15. Bailey TS (2001) Morphological behavior spanning the symmetric AB andABC block copolymer states. Ph.D. Thesis, University of Minnesota, Minneapolis

  16. Tang P, Qiu F, Zhang HD, Yang YL (2004) Phys Rev E 69:031803

    Article  Google Scholar 

  17. Tyler CA, Qin J, Bates FS, Morse DC (2007) Macromolecules 40:4654–4668

    Article  CAS  Google Scholar 

  18. Qin J, Bates FS, Morse DC (2010) Macromolecules 43:5128–5136

    Article  CAS  Google Scholar 

  19. Mogi Y, Nomura M, Kotsuji H, Ohnishi K, Matsushita Y, Noda I (1994) Macromolecules 27:6755–6760

    Article  CAS  Google Scholar 

  20. Matsushita Y, Suzuki J, Seki M (1998) Physica B 248:238–242

    Article  CAS  Google Scholar 

  21. Bailey TS, Hardy CM, Epps TH, Bates FS (2002) Macromolecules 35:7007–7017

    Article  CAS  Google Scholar 

  22. Chatterjee J, Jain J, Bates FS (2007) Macromolecules 40:2882–2896

    Article  CAS  Google Scholar 

  23. Epps TH, Cochran EW, Hardy CM, Bailey TS, Waletzko RS, Bates FS (2004) Macromolecules 37:7085–7088

    Article  CAS  Google Scholar 

  24. Guo ZJ, Zhang GJ, Qiu F, Zhang HD, Yang YL, Shi AC (2008) Phys Rev Lett 101:028301

    Article  PubMed  Google Scholar 

  25. Liu MJ, Li WH, Qiu F, Shi AC (2012) Macromolecules 45:9522–9530

    Article  CAS  Google Scholar 

  26. Li WH, Qiu F, Shi AC (2012) Macromolecules 45:503–509

    Article  CAS  Google Scholar 

  27. Auschrat C, Stadler R (1993) Macromolecules 26:2171–2174

    Article  Google Scholar 

  28. Ott H, Abetz V, Altstädt V (2001) Macromolecules 34:2121–2128

    Article  CAS  Google Scholar 

  29. Breiner U, Krappe U, Abetz V, Stadler R (1997) Macromol Chem Phys 198:1051–1083

    Article  CAS  Google Scholar 

  30. Breiner U, Krappe U, Jakob T, Abetz V, Stadler R (1998) Polym Bull 40:219–226

    Article  CAS  Google Scholar 

  31. Nagata Y, Masuda J, Noro A, Cho DY, Takano A, Matsushita Y (2005) Macromolecules 38:10220–10225

    Article  CAS  Google Scholar 

  32. Masuda J, Takano A, Suzuki J, Nagata Y, Noro A, Hayashida K, Matsushita Y (2007) Macromolecules 40:4023–4027

    Article  CAS  Google Scholar 

  33. Fleury G, Bates FS (2009) Macromolecules 42:3598–3610

    Article  CAS  Google Scholar 

  34. Faber M, Voet VSD, Brinke G, Loos K (2012) Soft Matter 8:4479–4485

    Article  Google Scholar 

  35. Nap R, Sushko N, Erukhimovich I, Brinke G (2006) Macromolecules 39:6765–6770

    Article  CAS  Google Scholar 

  36. Klymko T, Subbotin A, Brinke G (2008) J Chem Phys 129:114902

    Article  CAS  PubMed  Google Scholar 

  37. Li WH, Shi AC (2009) Macromolecules 42:811–819

    Article  CAS  Google Scholar 

  38. Xu YC, Li WH, Qiu F, Yang YL, Shi AC (2010) J Phys Chem B 114:14875–14883

    Article  CAS  PubMed  Google Scholar 

  39. Xu YC, Li WH, Qiu F, Yang YL, Shi AC (2011) Phys Chem Chem Phys 13:12421–12428

    Article  CAS  PubMed  Google Scholar 

  40. Wang LQ, Lin JP, Zhang LS (2010) Macromolecules 43:1602–1609

    Article  CAS  Google Scholar 

  41. Yu JM, Dubois P, Jérôme R (1997) Macromolecules 30:4984–4994

    Article  CAS  Google Scholar 

  42. Meuler AJ, Fleury G, Hillmyer MA, Bates FS (2008) Macromolecules 41:5809–5817

    Article  CAS  Google Scholar 

  43. Meuler A J (2009) Network Morphologies in Monodisperse and Polydisperse Multiblock Terpolymers. Ph.D. Dissertation, University of Minnesota, Minneapolis

  44. Gao J, Lv C, An K, Gu XY, Nie JJ, Li YJ, Xu JT, Du BY (2020) Macromolecules 53:9641–9653

    Article  CAS  Google Scholar 

  45. Liu HH, Huang CI, Shi AC (2015) Macromolecules 48:6214–6223

    Article  CAS  Google Scholar 

  46. Lo YT, Chang CH, Liu HH, Huang CI, Shi AC (2021) Macromol Theory Simul 30:2100014

    Article  CAS  Google Scholar 

  47. Tzeremes G, Rasmussen KO, Lookman T, Saxena A (2002) Phys Rev E 65:041806

    Article  CAS  Google Scholar 

  48. Matsen MW, Bates FS (1996) Macromolecules 29:1091–1098

    Article  CAS  Google Scholar 

  49. Briggs J, Chung H, Caffrey M (1996) J Phys II(6):723–751

    Google Scholar 

  50. Matsen MW (1995) Phys Rev Lett 74:4225

    Article  CAS  PubMed  Google Scholar 

  51. Matsen MW (1995) Macromolecules 28:5765–5773

    Article  CAS  Google Scholar 

  52. Yamada K, Nonomura M, Ohta T (2004) Macromolecules 37:5762–5777

    Article  CAS  Google Scholar 

  53. Takenaka M, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Shimizu H, Kim MI, Hasegawa H (2007) Macromolecules 40:4399–4402

    Article  CAS  Google Scholar 

  54. Xie X, Liu MJ, Deng HL, Li WH, Qiu F, Shi AC (2014) J Am Chem Soc 136:2974–2977

    Article  CAS  PubMed  Google Scholar 

  55. Liu MJ, Xia BK, Li WH, Qiu F, Shi AC (2015) Macromolecules 48:3386–3394

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Science and Technology Council (Ministry of Science and Technology), Taiwan (R.O.C.) and the facilities of the Shared Hierarchical Academic Research Computing Network (SHARCNET).

Funding

This work was supported by the National Science and Technology Council (Ministry of Science and Technology) of the Republic of China through Grant MOST 111–2221-E-002–025-Ministry of Science and Technology, Taiwan, MOST 111-2221-E-002-025-, Ching-I Huang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hsuan-Hung Liu or Ching-I. Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HH., Huang, CI. & Shi, AC. Exploring ordered structures by varying symmetric interaction parameters of non-frustrated ABCBA linear pentablock terpolymers in the melt. J Polym Res 30, 300 (2023). https://doi.org/10.1007/s10965-023-03667-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03667-w

Keywords

Navigation