Skip to main content
Log in

Direct observation of modulated structure upon cold-crystallization of syndiotactic polystyrene

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Isothermal and non-isothermal crystallization of melt-quenched syndiotactic polystyrene (sPS) films from the glassy state were studied using complementary tools of optical microscopy (OM), depolarized light scattering (DPLS), time-resolved Fourier transform infrared (FTIR) spectroscopy, and simultaneous wide-angle and small-angle X-ray scattering (WAXD/SAXS). On slow heating at a rate of 1 °C/min, modulated structures characterized by periodic density fluctuations with a wavelength of 7 μm are distinctly observed under phase contrast OM to abruptly emerge at 129 °C−130 °C, spanning entire sample dimensions, before the initial crystallization (Ti) at 130.5 °C, as-determined from time-resolved FTIR. The contrast of the modulated structures is initially low but is gradually enhanced as the sample crystallinity increases at higher temperatures. The interdomain distance of the modulated structures increases during the crystal melting at T > 260 °C and the modulated structures remain discernible up to 282 °C, a temperature higher than the maximum melting temperatures of the sPS crystals at 279 °C. DPLS detected the subtle increase in depolarized light intensity at T < Ti and disclosed the classic four-leaf-clover scattering pattern at T > Ti to feasibly probe the spherulite growth from 5 to 9 μm before crystal melting. In addition, similar modulated structures are observed in the amorphous film subjected to isothermal crystallization at 130 °C. Simultaneous WAXD/SAXS results showed that the crystallized film possesses the mesomorphic form, and a profound SAXS intensity at the low q region (< 0.03 Å−1) is seen before the emergence of the interference scattering peak located at the position (qm) of 0.05 Å−1. The low-q scattering becomes more significant as crystallization time is increased, whereas qm shifts to the high q region. The spinodal-assisted crystallization is proposed to occur in the sPS sample, and some details are provided based on these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Woo EM, Sun YS, Yang CP (2001) Prog Polym Sci 26:945–983

    Article  CAS  Google Scholar 

  2. Gowd EB, Tashiro K, Ramesh C (2009) Prog Polym Sci 34:280–315

    Article  CAS  Google Scholar 

  3. De Rosa C, De Ballesteros OR, Di Gennaro M, Auriemma F (2003) Polymer 44:1861–1870

    Article  Google Scholar 

  4. Ouchi T, Nagasaka S, Hotta A (2011) Macromolecules 44:2112–2119

    Article  CAS  Google Scholar 

  5. Wu HD, Wu ID, Chang FC (2000) Macromolecules 22:8915–8917

    Article  Google Scholar 

  6. Musto P, Tavone S, Guerra G, De Rosa C (1997) J Polym Sci Polym Phys Ed 35:1055–1066

    Article  CAS  Google Scholar 

  7. Petraccone V, Auriemma F, Poggetto FD, De Rosa C, Guerra G, Corradini P (1993) Makromol Chem 194:1335–1345

    Article  CAS  Google Scholar 

  8. Auriemma F, Petraccone V, Poggetto FD, De Rosa C, Guerra G, Manfredi C, Corradini P (1993) Macromolecules 26:3772–3777

    Article  CAS  Google Scholar 

  9. Wu FS, Woo EM (1999) Polym Eng Sci 39:825

    Article  CAS  Google Scholar 

  10. Wu TM, Hsu SF, Chien CF, Wu JY (2004) Polym Eng Sci 44:2288–2297

    Article  CAS  Google Scholar 

  11. Wang C, Chen CC, Cheng YW, Liao WP, Wang ML (2002) Polymer 43:5271–5279

    Article  CAS  Google Scholar 

  12. Wang C, Liao WP, Cheng YW (2003) J Polym Sci Polym Phys Ed 41:2457–2469

    Article  CAS  Google Scholar 

  13. Wang C, Lin CC, Chu CP (2005) Polymer 46:12595–12606

    Article  CAS  Google Scholar 

  14. Nishida K, Kaji K, Kanaya T, Matsuba G, Konishi T (2004) J Polym Sci Polym Phys Ed 42:1817–1822

    Article  CAS  Google Scholar 

  15. Kaji K, Nishida K, Kanaya T, Matsuba G, Konishi T, Imai M (2005) Adv Polym Sci 191:187–240

    Article  CAS  Google Scholar 

  16. Olmsted PD, Poon WK, McLeish TCB, Terrill NJ, Ryan AJ (1998) Phys Rev Lett 81:373–376

    Article  CAS  Google Scholar 

  17. Tang X, Chen W, Li L (2019) Macromolecules 52:3575–3591

    Article  CAS  Google Scholar 

  18. Turnbull D, Fisher JC (1949) J Chem Phys 17:71–73

    Article  CAS  Google Scholar 

  19. Konishi T, Okamoto D, Tadokoro D, Kawahara Y, Fukao K, Miyamoto Y (2018) Phys Rev Mater 2:105602

    Article  CAS  Google Scholar 

  20. Konishi T, Okamoto D, Tadokoro D, Kawahara Y, Fukao K, Miyamoto Y (2022) Phys Rev Lett 128:107801

    Article  CAS  PubMed  Google Scholar 

  21. Jiang Q, Zhao Y, Zhang C, Yang J, Wang D (2016) J Mol Struct 1124:98–102

    Article  CAS  Google Scholar 

  22. Su CH, Chen SH (2004) J Polym Res 11:293–298

    Article  CAS  Google Scholar 

  23. Ho RM, Lin CP, Tsai HY, Woo EM (2000) Macromolecules 33:6517–6526

    Article  CAS  Google Scholar 

  24. Matsuba G, Kaji K, Nishida K, Kanaya T, Imai M (1999) Macromolecules 32:8932–8937

    Article  CAS  Google Scholar 

  25. Stein RS, Rhodes MB (1960) J Appl Phys 31:1873

    Article  CAS  Google Scholar 

  26. Koberstein J, Russell TP, Stein RS (1979) J Polym Sci Polym Phys Ed 17:1719

    Article  CAS  Google Scholar 

  27. Miyamoto Y, Fukao K, Miyaji H (1995) Colloid Polym Sci 273:66–75

    Article  CAS  Google Scholar 

  28. Chuang WT, Su WB, Jeng US, Hong PD, Su CJ, Su CH, Huang YC, Laio KF, Su AC (2010) Macromolecules 44:1140–1148

    Article  Google Scholar 

  29. Su CH, Jeng U, Chen SH, Lin SJ, Wu WR, Chuang WT, Tsai JC, Su AC (2009) Macromolecules 42:6656–6664

    Article  CAS  Google Scholar 

  30. Strobl G (2006) Prog Polym Sci 31:398–442

    Article  CAS  Google Scholar 

  31. Androsch R, Schick C (2017) Adv Polym Sci 276:257–288

    Article  CAS  Google Scholar 

  32. Wurm A, Soliman R, Schick C (2003) Polymer 44:7467–7476

    Article  CAS  Google Scholar 

  33. Migler K, Kotula AP, Walker ARH (2015) Macromolecules 48:4555–4561

    Article  CAS  Google Scholar 

  34. Cong Y, Hong Z, Qi Z, Zhou W, Li H, Liu H, Chen W, Wang X, Li L (2010) Macromolecules 43:9859–9864

    Article  CAS  Google Scholar 

  35. Pogodina NV, Winter HH (1998) Macromolecules 31:8164–8172

    Article  CAS  Google Scholar 

  36. Nakaoki T, Kobayashi M (2003) J Mol Struct 655:343

    Article  CAS  Google Scholar 

  37. Wang C, Hsu YC, Lo CF (2001) Polymer 42:8447–8460

    Article  CAS  Google Scholar 

  38. Fillon B, Wittmann JC, Lotz B, Thierry A (1993) J Polym Sci Polym Phys Ed 31:1383–1393

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by the Ministry of Science and Technology of Taiwan (MOST 109-2221-E-006-202-MY3). The assistance of simultaneous WAXD/SAXS experiment from Drs. U-Ser Jeng and Chun-Jen Su in NSRRC is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Wang.

Ethics declarations

Competing of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yang, PH. & Ratnaningtiyas, M.M. Direct observation of modulated structure upon cold-crystallization of syndiotactic polystyrene. J Polym Res 30, 234 (2023). https://doi.org/10.1007/s10965-023-03604-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03604-x

Keywords

Navigation