Skip to main content

Advertisement

Log in

Polylactic acid reinforced with nano-hydroxyapatite bioabsorbable cortical screws for bone fracture treatment

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Bioabsorbable polymers are an alternative to the metal as an implant to avoid stress shielding, corrosion, and revision surgeries. So, the current work aimed to develop the cortical screw implants with polylactic acid (PLA) and nano-Hydroxyapatite (nHAp) to treat fractures. For this purpose, nHAp reinforced PLA cortical screws were made by the injection moulding technique. The optimum ratio of nHAp and PLA resulted in an axial pull-out strength of 737 N, an improvement of ~ 37% compared to pristine PLA. The torsional, flexural, and shear strength of the PLA/nHAp screws were 1157 mNm, 100 N and 49 MPa, respectively. Compared to neat PLA, an improvement of 30%, 23%, and 12% was witnessed in torsional, flexural, and shear strength. In-vitro hydrolytic degradation studies showed 14% and 10% mass reduction after 90 days for neat PLA and PLA/nHAp. The results obtained from the present investigation indicated the promising nature of the developed biocomposite internal fixation devices for bone fracture treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data associated with this study is provided in the manuscript.

References

  1. Prasad A (2021) Bioabsorbable polymeric materials for biofilms and other biomedical applications: Recent and future trends. Mater Today Proc 44:2447–2453. https://doi.org/10.1016/j.matpr.2020.12.489

    Article  CAS  Google Scholar 

  2. Prasad A (2021) State of art review on bioabsorbable polymeric scaffolds for bone tissue engineering. Mater Today Proc 44:1391–1400. https://doi.org/10.1016/j.matpr.2020.11.622

    Article  CAS  Google Scholar 

  3. Gupta A, Prasad A, Mulchandani N et al (2017) Multifunctional nanohydroxyapatite-promoted toughened high-molecular-weight stereocomplex poly (lactic acid)-based bionanocomposite for both 3D-printed orthopedic implants and high-temperature engineering applications. ACS Omega 2(7):4039-52. https://doi.org/10.1021/acsomega.7b00915

  4. Prasad A, Devendar B, Sankar MR et al (2015) Micro-scratch based tribological characterization of hydroxyapatite (HAp) fabricated through fish scales. Mater Today Proc 2(4–5):1216–1224. https://doi.org/10.1016/j.matpr.2015.07.034

    Article  CAS  Google Scholar 

  5. Adami S, Idolazzi L, Fracassi E et al (2013) Osteoporosis treatment: when to discontinue and when to re-start. Bone Res 1(1):323–335. https://doi.org/10.4248/BR201304003

    Article  PubMed  PubMed Central  Google Scholar 

  6. Adler RA (2014) Osteoporosis in men: A review. Bone Res 2:1–8. https://doi.org/10.1038/boneres.2014.1

    Article  Google Scholar 

  7. Lenz M, Lehmann W, Wähnert D (2016) Periprosthetic fracture fixation in osteoporotic bone. Injury 47:S44-50. https://doi.org/10.1016/S0020-1383(16)47008-7

    Article  PubMed  Google Scholar 

  8. Brown A, Zaky S, Ray H Jr, Sfeir C (2015) Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction. Acta Biomater 11:543–553. https://doi.org/10.1016/j.actbio.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  9. Pietrzak WS, Lessek TP, Perns SV (2006) A bioabsorbable fixation implant for use in proximal interphalangeal joint (hammer toe) arthrodesis: biomechanical testing in a synthetic bone substrate. J Foot Ankle Surg 45(5):288–294. https://doi.org/10.1053/j.jfas.2006.05.004

    Article  PubMed  Google Scholar 

  10. Mageed M, Steinberg T, Drumm N et al (2018) Internal fixation of proximal fractures of the 2nd and 4th metacarpal and metatarsal bones using bioabsorbable screws. Aust Vet J 96(3):76–81. https://doi.org/10.1111/avj.12673

    Article  CAS  PubMed  Google Scholar 

  11. Bos RR, Rozema FB, Boering G et al (1991) Degradation of and tissue reaction to biodegradable poly (L-lactide) for use as internal fixation of fractures: a study in rats. Biomat 12(1):32–36. https://doi.org/10.1016/0142-9612(91)90128-W

    Article  CAS  Google Scholar 

  12. Atala A, Lanza R, Mikos T et al (eds) (2007) Principles of regenerative medicine. Academic Press, eBook ISBN: 9780128098936

  13. Unnithan AR, Arathyram RS, Kim CS (2015) Scaffolds with antibacterial properties. In: Thomas S, Grohens Y, Ninan N (eds) Nanotechnology applications for tissue engineering. William Andrew Publishing, pp 103–123. ISBN 9780323328890. https://doi.org/10.1016/B978-0-323-32889-0.00007-8

  14. Becker G, Calvis A, Hazlett L et al (2014) Bioabsorbable polymeric fracture fixation devices aim to reduce stress shielding in bone. In: 2014 40th Annual Northeast Bioengineering Conference (NEBEC). IEEE, pp 52–53. ISBN: 978-1-4799-3729-5

  15. Cai X, Tong H, Shen X et al (2009) Preparation and characterization of homogeneous chitosan–polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomater 5(7):2693–2703. https://doi.org/10.1016/j.actbio.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  16. Perrone GS, Leisk GG, Lo TJ et al (2014) The use of silk-based devices for fracture fixation. Nat Commun 5(1):1–9. https://doi.org/10.1038/ncomms4385

    Article  CAS  Google Scholar 

  17. Stares SL, Boehs L, Fredel MC et al (2012) Self-reinforced bioresorbable polymer P (L/DL) LA 70: 30 for the manufacture of craniofacial implant. Polímeros 22:378–383. https://doi.org/10.1590/S0104-14282012005000056

    Article  CAS  Google Scholar 

  18. Kinoshita Y, Maeda H (2013) Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. Sci World J. https://doi.org/10.1155/2013/863157

    Article  Google Scholar 

  19. Li L, Ding S, Zhou C (2004) Preparation and degradation of PLA/chitosan composite materials. J Appl Polym Sci 91(1):274–277. https://doi.org/10.1002/app.12954

    Article  CAS  Google Scholar 

  20. Pal AK, Katiyar V (2017) Melt processing of biodegradable poly (lactic acid)/functionalized chitosan nanocomposite films: mechanical modeling with improved oxygen barrier and thermal properties. J Polym Res 24(10):1–21. https://doi.org/10.1007/s10965-017-1305-5

    Article  CAS  Google Scholar 

  21. Pal AK, Katiyar V (2016) Nanoamphiphilic chitosan dispersed poly (lactic acid) bionanocomposite films with improved thermal, mechanical, and gas barrier properties. Biomacromol 17(8):2603–2618. https://doi.org/10.1021/acs.biomac.6b00619

    Article  CAS  Google Scholar 

  22. BabuValapa R, Pugazhenthi G, Katiyar V (2016) Hydrolytic degradation behaviour of sucrose palmitate reinforced poly (lactic acid) nanocomposites. Int J Biol Macromol 89:70–80

    Article  Google Scholar 

  23. Fan H, Gu Y, Wang S et al (2018) Characterization and analysis of torsion property of carbon fiber bundle combined with epoxy resin. Polym Compos 39(S4):E2529–E2539. https://doi.org/10.1002/pc.24823

    Article  CAS  Google Scholar 

  24. Devi RR, Dhar P, Kalamdhad A et al (2015) Fabrication of cellulose nanocrystals from agricultural compost. Compost Sci Util 23(2):104–116. https://doi.org/10.1080/1065657X.2014.972595

    Article  CAS  Google Scholar 

  25. Dziadek M, Pawlik J, Menaszek E et al (2015) Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds. J Biomed Mater Res B Appl 103(8):1580–1593. https://doi.org/10.1002/jbm.b.33350

    Article  CAS  Google Scholar 

  26. Li MX, Kim SH, Choi SW et al (2016) Effect of reinforcing particles on hydrolytic degradation behavior of poly (lactic acid) composites. Compos B Eng 96:248–254. https://doi.org/10.1016/j.compositesb.2016.04.029

    Article  CAS  Google Scholar 

  27. Bansal P, Katiyar D, Prakash S, Rao NR, Saxena V, Kumar V, Kumar A (2022) Applications of some biopolymeric materials as medical implants: An overview. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.05.480

    Article  Google Scholar 

  28. Singh R, Barwar A, Kumar R, Kumar V (2022) On mechanically recycled PLA-HAP-CS-based filaments for 3D printing of smart biomedical scaffolds. J Braz Soc Mech Sci 44(9):1–4. https://doi.org/10.1007/s40430-022-03727-0

    Article  CAS  Google Scholar 

  29. Gazor MS, Ansari M, Hedayati SK, Ansari M (2022) Bone fixation implants with in-situ controllable stiffness: Modifying the R-curve behavior by 3D printing. J Compos Mater 56(15):2337–2350. https://doi.org/10.1177/00219983221092843

    Article  CAS  Google Scholar 

  30. Zhang H, Mao X, Du Z, Jiang W, Han X, Zhao D, Han D, Li Q (2016) Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci Technol Adv Mater 17(1):136–148. https://doi.org/10.1080/14686996.2016.1145532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tu C, Chen J, Huang C, Xiao Y, Tang X, Li H, Ma Y, Yan J, Li W, Wu H, Liu C (2020) Effects of electromagnetic fields treatment on rat critical-sized calvarial defects with a 3D-printed composite scaffold. Stem Cell Res Ther 11:1–4. https://doi.org/10.1186/s13287-020-01954-7

    Article  CAS  Google Scholar 

  32. Liu S, Qin S, He M, Zhou D, Qin Q, Wang H (2020) Current applications of poly (lactic acid) composites in tissue engineering and drug delivery. Comp Part B Eng 199:108238. https://doi.org/10.1016/j.compositesb.2020.108238

    Article  CAS  Google Scholar 

  33. Prasad A (2019) Development and characterization of nano-hydroxyapatite based bioabsorbable polymeric internal fixation devices, PhD Thesis, IIT Guwahati

  34. Arun KV, Jadhav KK (2016) Behaviour of human femur bone under bending and impact loads. Eur J Clin Biomed Sci 2(2):6–13. https://doi.org/10.11648/j.ejcbs.20160202.11

  35. Donneys A, Tchanque-Fossuo CN, Blough JT, Nelson NS, Deshpande SS, Buchman SR (2014) Amifostine preserves osteocyte number and osteoid formation in fracture healing following radiotherapy. Journal of Oral Maxillo Surg 72(3):559–566

    Article  Google Scholar 

  36. Neagu TP, Ţigliş M, Popp CG, Jecan CR (2016) Histological assessment of fracture healing after reduction of the rat femur using two different osteosynthesis methods. Rom J Morphol Embryol 57(3):1051–1056

    PubMed  Google Scholar 

  37. Dishowitz MI, Mutyaba PL, Takacs JD, Barr AM, Engiles JB, Ahn J, Hankenson KD (2013) Systemic inhibition of canonical Notch signaling results in sustained callus inflammation and alters multiple phases of fracture healing. PloS One 8(7):e68726. https://doi.org/10.1371/journal.pone.0068726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the Centre of Excellence for Sustainable Polymers (CoE-SusPol) at the Indian Institute of Technology Guwahati, Central Workshop, IIT Guwahati, and Central Instrumentation Facility, IIT Guwahati, for providing the necessary facilities to execute this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Katiyar.

Ethics declarations

Competing interests

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 261 KB)

Supplementary file2 (TIF 2.73 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, A., Bhasney, S.M., Prasannavenkadesan, V. et al. Polylactic acid reinforced with nano-hydroxyapatite bioabsorbable cortical screws for bone fracture treatment. J Polym Res 30, 177 (2023). https://doi.org/10.1007/s10965-023-03542-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03542-8

Keywords

Navigation