Skip to main content
Log in

Reinforcing CFRP composites by formation of tailored interfacial mechanical interlocking structure on carbon fiber surface

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

For improving interfacial interactions of Epoxy (EP)/carbon fiber (CFs) composites (CFRP), CFs were oxidized, while grapheme oxide (GO) layer was successfully grafted onto CFs surface through bridging effect of polydopamine (PDA) to obtain GO@PDA@CF hybrids, forming rough surface structure of CFs. The smaller epoxy contact angle of GO@PDA@OCFs indicated improving wettability between CFs/EP, while more and bigger EP fragments remained on interlaminar shear fracture surfaces, and CFs were embedded in matrix without obvious gap, indicating significantly enhanced interfacial bonding of composites by forming mechanical interlocking structure. The interfacial strength of composites was thus improved via effective transfer of stress between matrix-fiber at interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available when required.

References

  1. Papageorgiou DG, Li Z, Liu M, Kinloch IA, Young RJ (2020) Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale 12:2228–2267. https://doi.org/10.1039/c9nr06952f

    Article  CAS  PubMed  Google Scholar 

  2. Ma J, Shang T, Ren L, Yao Y, Zhang T, Xie J, Zhang B, Zeng X, Sun R, Xu JB, Wong CP (2020) Through-plane assembly of carbon fibers into 3d skeleton achieving enhanced thermal conductivity of a thermal interface material. Chem Eng J 380:122550. https://doi.org/10.1016/j.cej.2019.122550

    Article  CAS  Google Scholar 

  3. Ma L, Zhu Y, Feng P, Song G, Huang Y, Liu H, Zhang J, Fan J, Hou H, Guo Z (2019) Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Compos Part B-Eng 176:107078. https://doi.org/10.1016/j.compositesb.2019.107078

    Article  CAS  Google Scholar 

  4. Altin KM, Gökkaya H (2018) A review on machinability of carbon fiber reinforced polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) composite materials. Def Technol 14:318–326. https://doi.org/10.1016/j.dt.2018.02.001

    Article  Google Scholar 

  5. Zhang J, Chevali VS, Wang H, Wang CH (2020) Current status of carbon fiber and carbon fiber composites recycling. Compos Part B-Eng 193:108053. https://doi.org/10.1016/j.compositesb.2020.108053

    Article  CAS  Google Scholar 

  6. Shin YC, Lee WI, Kim HS (2019) Mode II interlaminar fracture toughness of carbon nanotubes/epoxy film-interleaved carbon fiber composites. Compos Struct 236:111808. https://doi.org/10.1016/j.compstruct.2019.111808

    Article  Google Scholar 

  7. Wang L, Ma ZL, Qiu H, Zhang YL, Yu Z, Gu JW (2022) Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett 14:224. https://doi.org/10.1007/s40820-022-00949-8

    Article  CAS  Google Scholar 

  8. Qiu B, Ni L, Zhang X, Chen Y, Zhou S, Heng Z, Liang M, Zou H (2021) Bio-inspired barb structure designed on the surface of carbon fibers to enhance the interfacial properties of composites in multiple scales. Mater Chem Front 5:5769–5779. https://doi.org/10.1039/d1qm00504a

    Article  CAS  Google Scholar 

  9. Werken N, Tekinalp H, Khanbolouki P, Ozcan S, Williams A, Tehrani M (2019) Additively manufactured carbon fiber-reinforced composites: state of the art and perspective. Addit Manuf 31:100962. https://doi.org/10.1016/j.addma.2019.100962

    Article  CAS  Google Scholar 

  10. Zhang X, Sun T, Lei Y, Liang M, Zou H (2021) Synergistically optimizing interlaminar behavior of CFRP composites by simultaneously applying amino-rich graphene oxide to carbon fiber and epoxy matrix. Compos Part A 145:106372. https://doi.org/10.1016/j.compositesa.2021.106372

    Article  CAS  Google Scholar 

  11. Wang C, Zhao M, Li J, Yu J, Sun S, Ge S, Guo X, Xie F, Jiang B, Wujcik EK, Huang Y, Wang N, Guo Z (2017) Silver Nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131:263–271. https://doi.org/10.1016/j.polymer.2017.10.049

    Article  CAS  Google Scholar 

  12. Memon H, Wei Y, Zhang L, Jiang Q, Liu W (2020) An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber reinforced composites. Compos Sci Technol 199:108314. https://doi.org/10.1016/j.compscitech.2020.108314

    Article  CAS  Google Scholar 

  13. Al-Furjan MSH, Fereidouni M, Sedghiyan D, Habibi M, Jung DW (2021) Three-dimensional frequency response of the CNT-Carbon-Fiber Reinforced laminated circular/annular plates under initially stresses. Compos Struct 257:112146. https://doi.org/10.1016/j.compstruct.2020.113146

    Article  Google Scholar 

  14. Sun T, Li M, Zhou S, Liang M, Chen Y, Zou H (2019) Multi-scale structure construction of carbon fiber surface by electrophoretic deposition and electro polymerization to enhance the interfacial strength of epoxy resin composites. Appl Surf Sci 499:143929. https://doi.org/10.1016/j.apsusc.2019.143929

    Article  CAS  Google Scholar 

  15. Fu J, Zhang M, Jin L, Liu L, Li N, Shang L, Li M, Xiao L, Ao Y (2019) Enhancing interfacial properties of carbon fibers reinforced epoxy composites via layer-by-layer self assembly GO/SiO2 multilayers films on carbon fibers surface. Appl Surf Sci 470:543–554. https://doi.org/10.1016/j.apsusc.2018.11.168

    Article  CAS  Google Scholar 

  16. Yu W, Sisi L, Haiyan Y, Jie L (2020) Progress in the functional modification of graphene/graphene oxide: a review. RSC Adv 10:15328–15345. https://doi.org/10.1039/d0ra01068e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gao B, Zhang J, Hao Z et al (2017) In-Situ modification of carbon fibers with hyperbranched polyglycerol via anionic ring-opening polymerization for use in high-performance composites. Carbon 123:548–557. https://doi.org/10.1016/j.carbon.2017.08.008

    Article  CAS  Google Scholar 

  18. Meng YQ, Zhang G, Ye L (2018) In situ crosslinking of poly (vinyl alcohol)/graphene oxide nano-composite hydrogel: intercalation structure and adsorption mechanism for advanced pb (II) removal. J Polym Res 25:548. https://doi.org/10.1007/s10965-018-1569-4

    Article  CAS  Google Scholar 

  19. Zhong X, Yang XT, Ruan KP, Zhang JL, Zhang HT, Gu JW (2022) Discotic liquid crystal epoxy resins integrating intrinsic high thermal conductivity and intrinsic flame retardancy. Macromol Rapid Comm 43:2100580. https://doi.org/10.1002/marc.202100580

    Article  CAS  Google Scholar 

  20. Wang W, Zhang Z, Zhao X et al (2022) Polyoxymethylene/reduced graphene oxide-g-melamine nano-composites with low formaldehyde emission: intercalation structure and synergistic thermal oxidative stabilization effect. Polym Degrad Stabil 198:109876. https://doi.org/10.1016/j.polymdegradstab.2022.109876

    Article  CAS  Google Scholar 

  21. Wu BY, Ye L, Zhao XW (2018) Intercalation structure and toughening mechanism of graphene/urea-formaldehyde nanocomposites prepared via in situ polymerization. Polym Int 67:330–339. https://doi.org/10.1002/pi.5509

    Article  CAS  Google Scholar 

  22. Yang X, Fan S, Li Y (2020) Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos Part A Appl Sci Manuf 128:105670. https://doi.org/10.1016/j.compositesa.2019.105670

    Article  CAS  Google Scholar 

  23. Chen X, Xu H, Liu D (2017) A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites. Appl Surf Sci 410:530–539. https://doi.org/10.1016/j.apsusc.2017.03.104

    Article  CAS  Google Scholar 

  24. Awan FS, Fakhar MA, Khan LA, Subhani T (2019) Study of interfacial properties of carbon fiber epoxy matrix composites containing graphene nanoplatelets. Fiber Polym 20:633–641. https://doi.org/10.1007/s12221-019-8596-6

    Article  CAS  Google Scholar 

  25. Pathak AK, Borah M, Gupta A, Yokozeki T, Dhakate SR (2016) Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Compos Sci Technol 135:28–38. https://doi.org/10.1016/j.compscitech.2016.09.007

    Article  CAS  Google Scholar 

  26. Qu C, Huang Y, Li F et al (2020) Enhanced cryogenic mechanical properties of carbon fiber reinforced epoxy composites by introducing graphene oxide. Compos Commun 22:100480. https://doi.org/10.1016/j.coco.2020.100480

    Article  Google Scholar 

  27. Yu YR, Shu Y, Ye L (2018) In situ crosslinking of poly (vinyl alcohol)/graphene oxide-glutamic acid nano-composite hydrogel as microbial carrier: intercalation structure and its wastewater treatment performance. Chem Eng J 336:306–314. https://doi.org/10.1016/j.cej.2017.12.038

    Article  CAS  Google Scholar 

  28. Song H, Yan S, Yao Y et al (2019) 3D α-Fe2O3 nanorods arrays@graphene oxide nanosheets as sensing materials for improved gas sensitivity. Chem Eng J 370:1331–1340. https://doi.org/10.1016/j.cej.2019.03.254

    Article  CAS  Google Scholar 

  29. Chen J, Zheng J, Wang F, Huang Q, Ji G (2020) Carbon fibers embedded with feiii-mof-5-derived composites for enhanced microwave absorption. Carbon 174:509–517. https://doi.org/10.1016/j.carbon.2020.12.077

    Article  CAS  Google Scholar 

  30. Li CL, Ye L, Zhao XW (2022) Reinforcing urea-formaldehyde based composite foam by formation of tailored chemical/mechanical interlocking structure. Polym Compos 43:2208–2221. https://doi.org/10.1002/pc.26534

    Article  CAS  Google Scholar 

  31. Feng P, Song G, Li X, Xu H, Xu L, Lv D, Zhu X, Huang Y, Ma L (2021) Effects of different “rigid-flexible” structures of carbon fibers surface on the interfacial microstructure and mechanical properties of carbon fiber/epoxy resin composites. J Colloid Interf Sci 583:13–23. https://doi.org/10.1016/j.jcis.2020.09.005

    Article  CAS  Google Scholar 

  32. Liu Z, Fan XL, Zhang JL, Chen LX, Tang, Yusheng, Jie Kong and Junwei Gu (2022) Significantly improved interfacial properties and wave-transparent performance of PBO fibers/cyanate esters laminated composites via introducing a polydopamine/ZIF-8 hybrid membrane. Compos Sci Technol 223:109426. https://doi.org/10.1016/j.compscitech.2022.109426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No.51933007), Natural Science Foundation of Sichuan Province (No.2022NSFSC0355), Project of Engineering Characteristic Team of Sichuan University, and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Ye.

Ethics declarations

Conflict of interest

This work has no any conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, X. & Ye, L. Reinforcing CFRP composites by formation of tailored interfacial mechanical interlocking structure on carbon fiber surface. J Polym Res 30, 150 (2023). https://doi.org/10.1007/s10965-023-03537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03537-5

Keywords

Navigation