Skip to main content
Log in

Isothermal and non-isothermal crystallization kinetics of UHMWPE composites incorporating with GNP/MWCNT

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Ultra High Molecular Weight Polyethylene (UHMWPE), a captivating material, presents incomparable physical and chemical properties due to very high molecular weight and intricate crystalline process. In this study, two kinds of nano-materials, one-dimensional multi-walled carbon nanotubes (MWCNT) and two-dimensional lamellar graphene nanoplatelets (GNP), were added to UHMWPE, investigating the isothermal and non-isothermal crystallization processes of UHMWPE/nano-materials composites. Jeziorny and Mo method are all suitable for describing the non-isothermal crystallization process. Interestingly, both MWCNT and GNP did not play the role of heterogeneous nucleating agents. The crystallization activation energy of UHMWPE/nano-materials composites is slightly enlarged, proving that the addition of these two nanomaterials is unfavorable to the crystallization process. In addition, during the non-isothermal crystallization process, the neat UHMWPE exhibits a lower crystallization rate than that of samples modified by nano-materials at initial crystallization stage, and possesses a slower crystallization rate than that of samples modified by nano-materials at end crystallization stage. This phenomenon may be attributed to the fact that the incorporated nano-materials abate the number of the physical entanglement points of UHMWPE molecular chains, which weakens the restriction on the movement of molecular chains and increases the crystallization rate at the initial stage. However, the crystallization rate of the samples incorporated with nano-materials decreases rapidly with time. Besides, the Avrami exponent is about 2 in both isothermal and non-isothermal crystallization process, which may be related to the geometry of crystal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Visco A, Yousef S, Galtieri G, Nocita D, Pistone A, Njuguna J (2016) Thermal, Mechanical and Rheological Behaviors of Nanocomposites Based on UHMWPE/Paraffin Oil/Carbon Nanofiller Obtained by Using Different Dispersion Techniques. Jom-Us 68(4):1078–1089

    Article  CAS  Google Scholar 

  2. Zhou J, Zhang X, Zhao SC, Ye CL, Zhang ZF, Kuo SW, Xin Z (2022) Study on the effects of soluble POSS on chain disentanglement in UHMWPE polymerization. Polymer 244:124561

  3. Zhang XY, Chen K, Xu LM, Qi JW, Luo Y, Zhang DK (2022) Tribological behavior of Ti6Al4 V alloy swing against UHMWPE under different lubrication. J Thermoplast Compos 35(5):740–757

    Article  CAS  Google Scholar 

  4. Yang ZX, Guo ZW, Yang ZR, Wang CB, Yuan CQ (2021) Study on tribological properties of a novel composite by filling microcapsules into UHMWPE matrix for water lubrication. Tribol Int 153:106629

  5. Guo ZW, Xie X, Yuan CQ, Bai XQ (2019) Study on influence of micro convex textures on tribological performances of UHMWPE material under the water-lubricated conditions. Wear 426:1327–1335

    Article  Google Scholar 

  6. Sui Y, Li JC, Qiu ZJ, Cui Y, Cong CB, Meng XY, Ye HM, Zhou Q (2022) Effects of the sintering temperature on the superior cryogenic toughness of ultra-high molecular weight polyethylene (UHMWPE). Chem Eng J 444:136366

  7. Oral E, Wannomae KK, Bichara DA, Micheli B, Doshi BN, O’Brien C, Nielsen GP, Muratoglu OK (2019) An antioxidant stabilized, chemically cross-linked UHMWPE with superior toughness. J Biomed Mater Res B Appl Biomater 107(6):1945–1952

    Article  CAS  PubMed  Google Scholar 

  8. Wu MJ, Jia LX, Chen ZH, Wang JA, Yan RS (2022) Synergetic enhancement of interfacial properties and impact resistant of UHMWPE fiber reinforced composites by oxygen plasma modification. Compos Struct 292:115663

  9. Catauro M, Scolaro C, Dal Poggetto G, Pacifico S, Visco A (2020) Wear resistant nanocomposites based on biomedical grade UHMWPE paraffin oil and carbon nano-filler: Preliminary biocompatibility and antibacterial activity investigation. Polymers (Basel) 12(4):978

    Article  CAS  PubMed  Google Scholar 

  10. Gupta TK, Choosri M, Varadarajan KM, Kumar S (2018) Self-sensing and mechanical performance of CNT/GNP/UHMWPE biocompatible nanocomposites. J Mater Sci 53(11):7939–7952

    Article  CAS  Google Scholar 

  11. Diabb Zavala JM, Leija Gutierrez HM, Segura-Cardenas E, Mamidi N, Morales-Avalos R, Villela-Castrejon J, Elias-Zuniga A (2021) Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites. J Mech Behav Biomed Mater 120:104554

    Article  CAS  PubMed  Google Scholar 

  12. Karyakina E, Shammazov I, Voronov V, Shalygin A (2021) The Simulation of Ultra-High Molecular Weight Polyethylene Cryogenic Pipeline Stress-Strain State. Mater Sci Forum 1031:132–140

    Article  Google Scholar 

  13. Karyakina ED, Shammazov IA, Shalygin AV (2021) Main aspects of liquefied natural gas process line thermal and hydraulic calculations. IOP Conf Ser Earth Environ Sci 677(5):52–56

  14. Belov D, Gruchenkova A, Chepur P (2021) Assessing the efficiency of using carbon nanocomposite materials for corrosion protection of gas pipelines. J Phys Conf Ser 1989(1):12–18

  15. Maksimkin AV, Senatov FS, Anisimova NY, Kiselevskiy MV, Zalepugin DY, Chernyshova IV, Tilkunova NA, Kaloshkin SD (2017) Multilayer porous UHMWPE scaffolds for bone defects replacement. Mater Sci Eng C Mater Biol Appl 73:366–372

    Article  CAS  PubMed  Google Scholar 

  16. Senatov FS, Chubrik AV, Maksimkin AV, Kolesnikov EA, Salimon AI (2019) Comparative analysis of structure and mechanical properties of porous PEEK and UHMWPE biomimetic scaffolds. Mater Lett 239:63–66

    Article  CAS  Google Scholar 

  17. Tian YL, Guo LM (2018) Surface modification of UHMWPE fibers by means of polyethylene wax grafted maleic anhydride treatment. J Appl Polym Sci 135(31)

  18. Wang Y, Hou R (2022) Research progress on surface modification and application status of UHMWPE fiber. J Phys Conf Ser 2263(1):12–16

    Article  Google Scholar 

  19. Zhang R, Wang S, Tian J, Chen K, Xue P, Wu Y, Chou W (2020) Effect of PEW and CS on the thermal, mechanical, and shape memory properties of UHMWPE. Polymers (Basel) 12(2):483

  20. Wang HD, Yan X, Tang X, Ma YL, Fan XQ, Li W, Yu W, Wang JD, Yang YR (2022) Contribution of the Initially Entangled State and Particle Size to the Sintering Kinetics of UHMWPE. Macromolecules 55(4):1310–1320

    Article  CAS  Google Scholar 

  21. Wu ZX, Zhang ZS, Mai KC (2020) Non-isothermal crystallization kinetics of UHMWPE composites filled by oligomer-modified CaCO3. J Therm Anal Calorim 139(2):1111–1120

    Article  CAS  Google Scholar 

  22. Zhang R, Tian J, Wu YH, Chou WM, Yang JY, Xue P (2021) An investigation on shape memory behaviors of UHMWPE-based nanocomposites reinforced by graphene nanoplatelets. Polym Test 99:107217

  23. Aghvami-Panah M, Panahi-Sarmad M, Seraji AA, Jamalpour S, Ghaffarian SR, Park CB (2021) LDPE/MWCNT and LDPE/MWCNT/UHMWPE self-reinforced fiber-composite foams prepared via supercritical CO2: A microstructure-engineering property perspective. J Supercrit Fluids 174:105248

  24. Santos CM d, Silva BC d, Backes EH, Montagna LS, Pessan LA, Passador FR (2018) Effect of LLDPE on Aging Resistance and Thermal, Mechanical, Morphological Properties of UHMWPE/LLDPE Blends. Materials Research 21(5)

  25. Zhang R, Yang Q, Liu M, Chen X, Xue P (2022) Thermal actuation shape memory of ultra-high-molecular-weight polyethylene (UHMWPE) with molecular orientation. Mater Lett 325:132813

  26. Zhang R, Yan WQ, Yang Q, Chen XN, Chen K, Ding Y, Xue P (2022) Analysis of thermal-active bending and cyclic tensile shape memory mechanism of UHMWPE/CNT composite. Polym Compos 43(12):9089–9099

    Article  CAS  Google Scholar 

  27. Lippits DR, Rastogi S, Hohne GW (2006) Melting kinetics in polymers. Phys Rev Lett 96(21):218303

    Article  CAS  PubMed  Google Scholar 

  28. Liu C, Qiu HT, Liu CJ, Zhang J (2012) Study on crystal process and isothermal crystallization kinetics of UHMWPE/CA-MMT composites. Polym Compos 33(11):1987–1992

    Article  Google Scholar 

  29. Liu KS, de Boer EL, Yao YF, Romano D, Ronca S, Rastogi S (2016) Heterogeneous Distribution of Entanglements in a Nonequilibrium Polymer Melt of UHMWPE: Influence on Crystallization without and with Graphene Oxide. Macromolecules 49(19):7497–7509

    Article  CAS  Google Scholar 

  30. Boon Peng C, Hazizan MA, Md. Nasir R (2013) The Effect of Zeolite on the Crystallization Behaviour and Tribological Properties of UHMWPE Composite. Adv Mater Res 812:100–106

  31. Song SJ, Wu PY, Ye MX, Feng JC, Yang YL (2008) Effect of small amount of ultra high molecular weight component on the crystallization behaviors of bimodal high density polyethylene. Polymer 49(12):2964–2973

    Article  CAS  Google Scholar 

  32. Li A, Li F, Mai K, Zhang Z, Zapotoczny S (2022) Crystallization and Melting Behavior of UHMWPE Composites Filled by Different Carbon Materials. Adv Polym Technol 2022:1–11

    Article  Google Scholar 

  33. Rwei SP, Ranganathan P, Lee YH (2019) Isothermal crystallization kinetics study of fully aliphatic PA6 copolyamides: Effect of novel long-chain polyamide salt as a comonomer. Polymers (Basel) 11(3):472

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rodrigues A, Carvalho BDM, Pinheiro LA, Bretas RES, Canevarolo SV, Marini J (2013) Effect of Compatibilization and Reprocessing on the Isothermal Crystallization Kinetics of Polypropylene/Wood Flour Composites. Polimeros 23(3):312–319

    Article  CAS  Google Scholar 

  35. Zhang CF, Bai YX, Gu J, Sun YP (2011) Crystallization Kinetics of Ultra High-Molecular Weight Polyethylene in Liquid Paraffin During Solid-Liquid Thermally Induced Phase Separation Process. J Appl Polym Sci 122(4):2442–2448

    Article  CAS  Google Scholar 

  36. Shao W, Zhang YQ, Wang ZG, Niu YH, Yue RJ, Hu WP (2012) Critical Content of Ultrahigh-Molecular-Weight Polyethylene To Induce the Highest Nucleation Rate for Isotactic Polypropylene in Blends. Ind Eng Chem Res 51(49):15953–15961

    Article  CAS  Google Scholar 

  37. Guan C, Yang HQ, Li W, Zhou DY, Xu J, Chen ZR (2014) Crystallization Behavior of Ultrahigh-Molecular-Weight Polyethylene/Polyhedral Oligomeric Silsesquioxane Nanocomposites Prepared by Ethylene In Situ Polymerization. J Appl Polym Sci 131(19)

  38. Guo J, Liu MH, Wang HK, Yu Y (2021) Non-isothermal crystallization kinetics of polypropylene/bamboo fiber/nano-TiO2 composites. Polym Composite 42(5):2531–2543

    Article  CAS  Google Scholar 

  39. Zhang CF, Zhu BK, Ji GL, Xu YY (2006) Studies on nonisothermal crystallization of ultra-high molecular weight polyethylene in liquid paraffin. J Appl Polym Sci 99(5):2782–2788

    Article  CAS  Google Scholar 

  40. Gupta AK, Rana SK, Deopura BL (1994) Crystallization kinetics of high-density polyethylene/linear low-density polyethylene blend. J Appl Polym Sci 51(2):231–239

    Article  CAS  Google Scholar 

  41. Zexiong W, Anqi L, Zishou Z, Kancheng M (2020) Crystallization of UHMWPE nanocomposites filled by multi-wall carbon nanotubes. J Therm Anal Calorim 146(5):2223–2232

    Article  Google Scholar 

  42. Kourtidou D, Tarani E, Chrysafi I, Menyhard A, Bikiaris DN, Chrissafis K (2020) Non-isothermal crystallization kinetics of graphite-reinforced crosslinked high-density polyethylene composites. J Therm Anal Calorim 142(5):1849–1861

    Article  CAS  Google Scholar 

  43. Nakatani AI, Chen W, Schmidt RG, Gordon GV, Han CC (2002) Chain dimensions in polysilicate-filled poly(dimethyl siloxane). Int J Thermophys 23(1):199–209

    Article  CAS  Google Scholar 

  44. Rasana N, Jayanarayanan K, Pegoretti A (2018) Non-isothermal crystallization kinetics of polypropylene/short glass fibre/multiwalled carbon nanotube composites. RSC Adv 8(68):39127–39139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Carvalho B, Bretas RES (1999) Quiescent crystallization kinetics and morphology of i-PP resins for injection molding. II. Nonisothermal crystallization as a function of molecular weight. J Appl Polym Sci 72(13):1733–1740

    Article  Google Scholar 

  46. De Carvalho B, Bretas RES (1998) Quiescent crystallization kinetics and morphology of isotactic polypropylene resins for injection molding. I. Isothermal crystallization. J Appl Polym Sci 68(7):1159–1176

    Article  Google Scholar 

  47. Shen HL, Zhang N (2011) Nonisothermal crystallization kinetics of HDPE/UHMWPE/n-HA composites. Adv Eng Mater Trans Tech Publ 2351–2354

  48. Weir MP, Johnson DW, Boothroyd SC, Savage RC, Thompson RL, King SM, Rogers SE, Coleman KS, Clarke N (2016) Distortion of Chain Conformation and Reduced Entanglement in Polymer-Graphene Oxide Nanocomposites. ACS Macro Lett 5(4):430–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by “the Fundamental Research Funds for the Central Universities (JD2219)”.

Author information

Authors and Affiliations

Authors

Contributions

Qun Yang: Conceptualization, Data curation, Writing- Original draft preparation, Writing-Reviewing and Editing. Run Zhang: Conceptualization, Methodology, Investigation, Supervision, Validation. Jing Tian: Visualization, Validation. Hailong He: Visualization, Validation. Ping Xue: Supervision, Visualization, Validation. Xiaonong Chen: Visualization, Validation. Mingyin Jia: Visualization, Validation.

Corresponding author

Correspondence to Run Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1115 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Zhang, R., Tian, J. et al. Isothermal and non-isothermal crystallization kinetics of UHMWPE composites incorporating with GNP/MWCNT. J Polym Res 30, 152 (2023). https://doi.org/10.1007/s10965-023-03533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03533-9

Keywords

Navigation