Skip to main content
Log in

Preparation of the polymerizable novel high refractive index hybrid carbazole-based polysiloxane oligomers by a sol–gel condensation reaction

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this paper, a series of novel carbazole-based polysiloxane oligomers: P(CzVinyl11Siloxane2), P(CzVinyl21Siloxane2), and P(CzVinyl11Siloxane3) with high refractive index (RI) containing the linear and/ or branched structures with vinyl and carbazole reactive moieties have been presented to the literature for optoelectronic applications. The polysiloxane oligomers were synthesized by an acid-catalyzed sol–gel condensation reaction of alkoxysilane monomers (carbazole-dimethoxysilane (Cz-2SiOCH3) and vinyl-(di- or tri-methoxy)silanes (VMDMS or VTMS)) in the presence of trimethylmethoxysilane (SiMe) after a photoinitiated thiol-ene reaction was performed to obtain the compound Cz-2SiOCH3. The structural confirmations were made using FT-IR, 1H NMR, and 13C NMR spectroscopies. In addition, a 29Si NMR study was performed to elucidate the nature of the siloxane structure of P(CzVinyl11Siloxane2). The refractive indices of the polysiloxane oligomers were between 1.6028 and 1.5923 as high values by varying the linear or branched structures. DSC analyzes revealed that the glass transition temperatures of P(CzVinyl11Siloxane2), P(CzVinyl21Siloxane2), and P(CzVinyl11Siloxane3) were -11 °C, -5 °C and -39 °C, respectively. Then, the polysiloxane oligomers were photopolymerized and their structural changes were observed by spectroscopic techniques. The photopolymerized polysiloxane oligomers with maintained and/ or enhanced refractive index values (between 1.6132 and 1.5719) showed very good transparency between 86.11% and 81.33% at 600 nm by the spin coating films. The novel carbazole-based polysiloxane oligomers would be useful chemical products or intermediates for the development of optical materials applied in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Macdonald EK, Shaver MP (2014) Polym Int 64(1):6–14

    Article  Google Scholar 

  2. Higashihara T, Ueda M (2015) Macromolecules 48(7):1915–1929

    Article  CAS  Google Scholar 

  3. Liu j-G, Ueda M (2009) J Mater Chem 19:8907–8919

  4. Fouassier JP (1995) Photoinitiation. Carl Hanser Verlag, Munich, Photopolymerization and Photocuring

    Google Scholar 

  5. Schnabel W (2006) Polymers and Light. Wiley-VCH Verlag, Weinheim, Fundamentals and Technical Applications

    Google Scholar 

  6. Turro NJ (1991) Modern Molecular Photochemistry. University Science Books, United States

    Google Scholar 

  7. Zhao X, Zhang Z, Guo K, He J, Zhou G, Huang X (2020) Opt Commun 474:126099

    Article  CAS  Google Scholar 

  8. Minns RA, Gaudiana RA (1992) J Macromol Sci A 29(1):19–30

    Article  Google Scholar 

  9. Gaudiana RA, Minns RA (1991) J Macromol Sci A 28(9):831–842

  10. Steinbruck N, Pohl S, Kickelbick G (2019) RSC Adv 9:2205

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sundar DS, Raja AS, Sanjeevirajaa C, Jeyakumar D (2016) Polym Int 65(5):535–543

    Article  Google Scholar 

  12. Enescu D, Hamciuc V, Pricop L, Hamaide T, Harabagiu V, Simionescu BC (2009) J Polym Res 16:73–80

    Article  CAS  Google Scholar 

  13. Usui M, Imamura S, Sugawara S, Hayashida S, Sato H, Hikita M, Izawa T (1994) Electron Lett 30(12):958–959

    Article  CAS  Google Scholar 

  14. Usui M, Hikita M, Watanabe T, Amano M, Sugawara S, Hayashida S, Imamura S (1996) J Light Technol 14(10):2338–2343

    Article  CAS  Google Scholar 

  15. Zhang H, Wang J, Li L, Song Y, Zhao M, Jian X (2008) Thin Solid Films 517:857–862

    Article  CAS  Google Scholar 

  16. Hsu C-Y, Han WG, Chiang S-J, Sub W-C, Liu Y-L (2016) RSC Adv 6:4377

    Article  CAS  Google Scholar 

  17. Chang C-C, Wei K-H, Chang Y-L, Chen W-C (2003) J Polym Res 10:1–6

    Article  CAS  Google Scholar 

  18. Zgraggen E, Soganci IM, Horst F, Porta AL, Dangel R, Offrein BJ, Snow SA, Young JK, Swatowski BW, Amb CM, Scholder O, Broennimann R, Sennhauser U, Bona GL (2014) J Light Technol 32(17):3036–3041

    Article  CAS  Google Scholar 

  19. Karaca N (2022) Polym Sci Ser B 64(5):606–615

    Article  Google Scholar 

  20. Chen M, Zhang G, Liang X, Zhang W, Zhou L, He B, Song P, Yuan X, Zhang C, Zhang L, Yu H, Yang H (2013) RSC Adv 6:70825–70831

    Article  Google Scholar 

  21. Chen J, Zhou Y, Ding Q, He M (2015) J Appl Polym Sci 132(33):42386

    Google Scholar 

  22. Loh TC, Ng CM, Kumar RN, Ismail H, Ahmad Z (2017) J Appl Polym Sci 134(37):45285

    Article  Google Scholar 

  23. He J, Nebioglu A, Zong Z, Soucek MD, Wollyung KM, Wesdemiotis C (2005) Macromol Chem Phys 206:732–743

    Article  CAS  Google Scholar 

  24. Jang M, Crivello JV (2003) J Polym Sci Part A Polym Chem 41(19):3056–3073

    Article  CAS  Google Scholar 

  25. Cole MA, Bowman CN (2012) J Polym Sci Part A Polym Chem 50(20):4325–4333

    Article  CAS  Google Scholar 

  26. Cole MA, Bowman CN (2013) J Polym Sci Part A Polym Chem 51(8):1749–1757

    Article  CAS  Google Scholar 

  27. Kim W-S, Houbertz R, Lee T-H, Bae B-S (2004) J Polym Sci Part B Polym Phys 42(10):1979–1986

    Article  CAS  Google Scholar 

  28. Howard B, Wilson ND, Newman SM, Pfeifer CS, Stansbury JW (2010) Acta Biomater 6:2053–2059

    Article  CAS  PubMed  Google Scholar 

  29. Woods R, Feldbacher S, Langer G, Satzinger V, Schmidt V, Kern W (2011) Polymer 52:3031–3037

    Article  CAS  Google Scholar 

  30. Wang W (2003) Eur Polym J 39:1117–1123

    Article  CAS  Google Scholar 

  31. Zhang K, Shen M-M, Wu K, Liu H-F, Zhang Y (2011) J Polym Res 18:2061–2070

    Article  CAS  Google Scholar 

  32. Zhou C, Gu A, Liang G, Ji L, Li Y (2011) J Polym Res 18:139–149

    Article  CAS  Google Scholar 

  33. Xin F, Han J, Pan H, Sun F (2019) J Macromol Sci A 57(5):1979–1986

    Google Scholar 

  34. Cheng X-E, Shi W (2010) Prog Org Coat 69:252–259

    Article  CAS  Google Scholar 

  35. Liu P, Gu A, Liang G, Guan Q, Yuan L (2012) Prog Org Coat 74:142–150

    Article  CAS  Google Scholar 

  36. Chen X, Fang L, Wang J, He F, Chen X, Wang Y, Zhou J, Tao Y, Sun J, Fang Q (2018) Macromolecules 51:7567–7573

    Article  CAS  Google Scholar 

  37. Kim J-S, Yang SC, Bae B-S (2010) J Sol-Gel Sci Technol 53:434–440

    Article  CAS  Google Scholar 

  38. Kahraman MV, Kugu M, Menceloglu Y, Apohan NK, Güngör A (2006) J Non-Cryst Solids 352:2143–2151

    Article  Google Scholar 

  39. Çakmakçı E, Altıntas Z¸ Kahraman MV, Apohan NK (2015) J Vinyl Addit Technol 21(4):272–277

  40. Nordin NH, Ramli MR, Othman N (2014) Polym Compos 22:625–632

    Article  CAS  Google Scholar 

  41. Karaca N, Balta DK, Öcal N, Arsu N (2014) J Lumin 146:424–429

    Article  CAS  Google Scholar 

  42. Karaca N, Öcal N, Arsu N, Jockusch S (2018) In: Lalevée J, Fouassier J-P (ed) Photopolymerisation Initiating Systems. Royal Society of Chemistry, London

  43. Xua J, Zhua W, Jiangc L, Xua J, Zhanga Y, Cuia Y (2015) RSC Adv 5:72736–72744

    Article  Google Scholar 

  44. Doyranli C, Büyükçelebi S, Koyuncu S, Usluer Ö, Kus M, Koyuncu FB (2016) React Funct Polym 106:17–23

    Article  CAS  Google Scholar 

  45. Gleißnera U, Bonausa S, Megnina C, Hanemann T (2016) Polym Adv Technol 28(4):506–510

    Article  Google Scholar 

  46. Akar A, Kizilcan N, Ustamehmetoglu B, Colak D, Sarac S, Colak C (2007) J Appl Polym Sci 106:3694–3702

    Article  CAS  Google Scholar 

  47. Choi S-C, Lee AS, Lee HS, Baek K-Y, Choi DH, Hwang SS (2011) Macromol Res 19(3):261–265

    Article  CAS  Google Scholar 

  48. Watase S, Fujisaki D, Watanabe M, Mitamura K, Nishioka N, Matsukawa K (2014) Chem Eur J 20:12773–12776

    Article  CAS  PubMed  Google Scholar 

  49. Sun D, Fu Q, Ren Z, Li H, Mab D, Yan S (2014) Polym Chem 5:220

    Article  CAS  Google Scholar 

  50. Jeong MK, Choi WT, Ahn B-H, Gal & Kwon Y-S, Lim T (2019) Mol Cryst Liq 686(1):45–54

  51. Reyna-Gonzalez JM, Roquero P, Rivera E (2009) Des Monomers Polym 12:233–245

    Article  CAS  Google Scholar 

  52. Sarac AS, Sezer E (1999) Polym Adv Technol 10:135–140

    Article  CAS  Google Scholar 

  53. Ruan DS, Li Y-L, Wang L, Su D, Hou F (2010) J Sol-Gel Sci Technol 56:184–190

    Article  CAS  Google Scholar 

  54. Soraru GD (2000) J Sol-Gel Sci Technol 18:11–19

    Article  CAS  Google Scholar 

  55. Alonso RP, Soraru GD (2007) J Sol-Gel Sci Technol 43:313–319

    Article  Google Scholar 

  56. He J, Zhou L, Soucek MD, Wollyung KM, Wesdemiotis C (2007) J Appl Polym Sci 105:2376–2386

    Article  CAS  Google Scholar 

  57. Eldada L, Shacklette LW (2000) J Sel Top Quantum Electron 6:54–68

    Article  CAS  Google Scholar 

  58. Eldada L (2001) Proc SPIE-Int Soc Opt Eng 40:1165

    Google Scholar 

  59. McGrath JE, Rasmussen L, Shultz AR (2006) Polymer 47:4042–4057

    Article  CAS  Google Scholar 

  60. Suzuki Y, Higashihara T, Ando S, Ueda M (2012) Macromolecules 45(8):3402–3408

    Article  CAS  Google Scholar 

  61. Johnson LM, Gao L, Shields CW, Smith M, Efimenko K, Cushing K, Genzer J, Lopez GP (2013) J Nanobiotechnology 11:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kherroub DE, Belbachir M, Lamouri (2017) e-Polymers 17(5):439–448

  63. Vaganov E, Komendant RI, Perepelitsina EO, Grachev VP, Kurochkin SA (2020) IOP Conf Ser Mater Sci and Eng 848:012036

    Article  CAS  Google Scholar 

  64. Mathews AS, Kim I, Ha CS (2007) Macromol Res 15:114–128

    Article  CAS  Google Scholar 

  65. Chan KH, Hong JL, Su AC (2004) J Polym Res 11:133–140

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Turkish Academy of Sciences (TUBA) for the financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurcan Karaca.

Ethics declarations

Conflict of interest

All authors declare that they have no confict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 1420 KB)

Supplementary file2 (DOCX 1586 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaca, N., Yıldırım, H. Preparation of the polymerizable novel high refractive index hybrid carbazole-based polysiloxane oligomers by a sol–gel condensation reaction. J Polym Res 30, 151 (2023). https://doi.org/10.1007/s10965-023-03526-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03526-8

Keywords

Navigation