Skip to main content
Log in

Flame-retardant properties of chitin liquefaction-based polyurethane foam

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The conversion of solid chitin into liquid low-molecular-weight polyol compounds using liquefaction technology can realize the high-value utilization of shrimp and crab shell marine waste. In this study, chitin liquefaction was conducted using sulfuric acid as the catalyst and propanetriol and polyethylene glycol as the liquefying agents. Thereafter, the acid number, hydroxyl value, viscosity and molecular weight of the chitin liquefaction product were tested and characterized. A polyurethane foam with low thermal conductivity and high mechanical strength was successfully synthesized. The preparation process was regulated by reacting the hydroxyl group that is abundant in chitin liquefaction with isocyanate instead of polyether polyol. Moreover, adding dimethyl methyl phosphate into the polyurethane to prepare flame retardant polyurethane foam. The flame retardance and thermal-insulation properties of the polyurethane foam synthesized using the chitin liquefaction product are significantly better than those of traditional polyol polyurethane foam, which broadens the application scope of polyurethane foam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study is available from the corresponding authors on request.

References

  1. Haider MM, Jian G, Zhong T et al (2022) Insights into setting time, rheological and mechanical properties of chitin nanocrystals- and chitin nanofibers-cement paste. Cem Concr Compos 132:104623

    Article  CAS  Google Scholar 

  2. Zhou Y, He Y, Lin X et al (2022) Sustainable, high-performance, and biodegradable plastics made from chitin. ACS Appl Mater Interfaces

  3. Kadokawa J, Shimohigoshi R, Yamashita K et al (2015) Synthesis of chitin and chitosan stereoisomers by thermostable alpha-glucan phosphorylase-catalyzed enzymatic polymerization of alpha-D-glucosamine 1-phosphate. Org Biomol Chem 13(14):4336–4343

    Article  CAS  PubMed  Google Scholar 

  4. Yu TT, Soomro SA, Huang F et al (2020) Naturally or artificially constructed nanocellulose architectures for epoxy composites: A review. Nanotechnol Rev 9(1):1643–1659

    Article  CAS  Google Scholar 

  5. Lv J, Lv X, Ma M et al (2022) Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydr Polym 120142

  6. Kozma M, Acharya B, Bissessur R (2022) Chitin, chitosan, and nanochitin: extraction, synthesis, and applications. Polymers 14(19)

  7. Pierson Y, Chen X, Bobbink FD et al (2014) Acid-catalyzed chitin liquefaction in ethylene glycol. ACS Sustainable Chem Eng 2(8):2081–2089

    Article  CAS  Google Scholar 

  8. Tran HTT, Deshan ADK, Doherty W et al (2022) Production of rigid bio-based polyurethane foams from sugarcane bagasse. Ind Crops Prod 188:115578

    Article  CAS  Google Scholar 

  9. Li Y, Luo X, Hu S (2015) Introduction to Bio-based Polyols and Polyurethanes. In: Li Y, Luo X, Hu S (eds) Bio-based Polyols and Polyurethanes. Springer International Publishing, Cham, pp 1–13

    Chapter  Google Scholar 

  10. Wang W, Wang D, Xia B et al (2022) Rigid polyurethane foams based on dextrin and glycerol. Ind Crops Prod 177:114479

    Article  CAS  Google Scholar 

  11. Wang S-X, Zhao H-B, Rao W-H et al (2018) Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer 153:616–625

    Article  CAS  Google Scholar 

  12. Huang G, Yang T, He Z et al (2022) Polyurethane as a modifier for road asphalt: A literature review. Constr Build Mater 356:129058

    Article  CAS  Google Scholar 

  13. Lubczak R, Szczęch D, Broda D et al (2021) Polyetherols and polyurethane foams from starch. Polym Test 93:106884

    Article  CAS  Google Scholar 

  14. Polaczek K, Kurańska M, Prociak A (2022) Open-cell bio-polyurethane foams based on bio-polyols from used cooking oil. J Cleaner Prod 359:132107

    Article  CAS  Google Scholar 

  15. Cao Z-J, Liao W, Wang S-X et al (2019) Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chem Eng J 361:1245–1254

    Article  CAS  Google Scholar 

  16. Meng D, Wang K, Wang W et al (2022) A biomimetic structured bio-based flame retardant coating on flexible polyurethane foam with low smoke release and antibacterial ability. Chemosphere 137060

  17. Zeng F, Men X, Chen M et al (2023) Molecular-micron multiscale toughening and flame retarding for polyurethane foams. Chem Eng J 454:140023

    Article  CAS  Google Scholar 

  18. Wang S, Wang S, Shen M et al (2021) Biobased Phosphorus Siloxane-Containing Polyurethane Foam with Flame-Retardant and Smoke-Suppressant Performances. ACS Sustainable Chem Eng 9(25):8623–8634

    Article  CAS  Google Scholar 

  19. Zhang S, Chu F, Zhou Y et al (2022) High-performance flexible polyurethane from renewable castor oil: Preparation, properties and mechanism. Compos Part A 159:107034

    Article  CAS  Google Scholar 

  20. Quinteiro P, Gama NV, Ferreira A et al (2022) Environmental assessment of different strategies to produce rigid polyurethane foams using unrefined crude glycerol. J Cleaner Prod 371:133554

    Article  CAS  Google Scholar 

  21. Jiang K, Chen W, Liu X et al (2022) Effect of bio-based polyols and chain extender on the microphase separation structure, mechanical properties and morphology of rigid polyurethane foams. Eur Polym J 179:111572

    Article  CAS  Google Scholar 

  22. Li H, Wang B, Shui H et al (2022) Preparation of bio-based polyurethane hydroponic foams using 100% bio-polyol derived from Miscanthus through organosolv fractionation. Ind Crops Prod 181:114774

    Article  CAS  Google Scholar 

  23. Somisetti V, Narayan R, Kothapalli R (2019) Multifunctional polyurethane coatings derived from phosphated cardanol and undecylenic acid based polyols. Prog Org Coat 134:91–102

    Article  CAS  Google Scholar 

  24. Lu H, Dun C, Jariwala H et al (2022) Improvement of bio-based polyurethane and its optimal application in controlled release fertilizer. J Controlled Release 350:748–760

    Article  CAS  Google Scholar 

  25. Malucelli G (2020) Flame-retardant systems based on chitosan and its derivatives: State of the art and perspectives. Molecules 25(18)

  26. Zhang S, Liu X, Jin X et al (2018) The novel application of chitosan: Effects of cross-linked chitosan on the fire performance of thermoplastic polyurethane. Carbohydr Polym 189:313–321

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Guo J, Tang W et al (2019) Enhancing the flame retardancy of thermoplastic polyurethane by introducing montmorillonite nanosheets modified with phosphorylated chitosan. Compos Part A 119:291–298

    Article  CAS  Google Scholar 

  28. Liu X, Sun J, Zhang S et al (2019) Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane. Polym Degrad Stab 160:168–176

    Article  CAS  Google Scholar 

  29. Jiao CM, Li MX, Chen XL et al (2020) Flame retardancy and thermal decomposition behavior of TPU/chitosan composites. Polym Adv Technol 31(1):178–188

    Article  CAS  Google Scholar 

  30. Liu X, Gu X, Sun J et al (2017) Preparation and characterization of chitosan derivatives and their application as flame retardants in thermoplastic polyurethane. Carbohydr Polym 167:356–363

    Article  CAS  PubMed  Google Scholar 

  31. Zemła M, Prociak A, Michałowski S (2022) Bio-based rigid polyurethane foams modified with phosphorus flame retardants. Polymers 14(1)

  32. Zhang J, Xu WR, Zhang YC et al (2018) Liquefied chitin/polyvinyl alcohol based blend membranes: Preparation and characterization and antibacterial activity. Carbohydr Polym 180:175–181

    Article  CAS  PubMed  Google Scholar 

  33. Li M-E, Wang S-X, Han L-X et al (2019) Hierarchically porous SiO2/polyurethane foam composites towards excellent thermal insulating, flame-retardant and smoke-suppressant performances. J Hazard Mater 375:61–69

    Article  CAS  PubMed  Google Scholar 

  34. Kamarian S, Yu RW, Song JI (2022) Synergistic effects of halloysite nanotubes with metal and phosphorus additives on the optimal design of eco-friendly sandwich panels with maximum flame resistance and minimum weight. Nanotechnol Rev 11(1):252–265

    Article  CAS  Google Scholar 

  35. Keshavarzian A, Haghighi MN, Afshar Taromi F et al (2020) Phosphorus-based flame retardant poly (butylene terephthalate): Synthesis, flame retardancy and thermal behavior. Polym Degrad Stab 180:109310

    Article  CAS  Google Scholar 

  36. Ding Y, Su Y, Huang J et al (2021) Flame retardancy behaviors of flexible polyurethane foam based on reactive dihydroxy P-N-containing flame retardants. ACS Omega 6(25):16410–16418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan B, Hu Y, Chen X et al (2017) Dual modification of graphene by polymeric flame retardant and Ni (OH)(2) nanosheets for improving flame retardancy of polypropylene. Compos Part A-Appl Sci Manuf 100:106–117

    Article  CAS  Google Scholar 

  38. Liu B-W, Zhao H-B, Wang Y-Z (2022) Advanced flame-retardant methods for polymeric materials. Adv Mater 34(46):2107905

    Article  CAS  Google Scholar 

  39. Xu W, Wang G, Zheng X (2015) Research on highly flame-retardant rigid PU foams by combination of nanostructured additives and phosphorus flame retardants. Polym Degrad Stab 111:142–150

    Article  CAS  Google Scholar 

  40. Zhang J, Xu WR, Zhang YC et al (2020) In situ generated silica reinforced polyvinyl alcohol/liquefied chitin biodegradable films for food packaging. Carbohydr Polym 238

  41. Liu X, Qin S, Li H et al (2019) Combination intumescent and kaolin-filled multilayer nanocoatings that reduce polyurethane flammability. Macromol Mater Eng 304(2):1800531

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by the National Natural Science Foundation of China (NSFC) (21978059)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhifen Wang or Yucang Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Wang, C., Liu, X. et al. Flame-retardant properties of chitin liquefaction-based polyurethane foam. J Polym Res 30, 143 (2023). https://doi.org/10.1007/s10965-023-03521-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03521-z

Keywords

Navigation