Skip to main content
Log in

Ti(OBu)4 in combination with B(OBu)3: Decoding the importance of chemo-selectivity of the catalyst towards high molecular weight poly(butylene succinate) synthesis

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A systematic approach in improving the efficiency of titanium tetrabutoxide towards the synthesis of high molecular weight PBS is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gandini A (2011) Biocatalysis in Polymer Chemistry, ed. K. Loos, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 1–33

  2. Platnieks O, Gaidukovs S, Thakur VK, Barkane A, Beluns S (2021) Bio-based poly (butylene succinate): Recent progress, challenges and future opportunities. Eur Polym J 161:110855. https://doi.org/10.1016/j.eurpolymj.2021.110855

    Article  CAS  Google Scholar 

  3. Rafiqah SA, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, Nurrazi MN, Lee CH (2021) A review on properties and application of bio-based poly(butylene succinate). Polymers 13:1436. https://doi.org/10.3390/polym13091436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mochane MJ, Magagula SL, Sefadi JS, Mokhena TC (2021) A review on green composites based on natural fiber-reinforced polybutylene succinate (PBS). Polymers 13:1200. https://doi.org/10.3390/polym13081200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chanthaset N, Ajiro H (2021) Synthetic biodegradable polymers with chain end modification: Polylactide, poly(butylene succinate), and poly(hydroxyalkanoate). Chem Lett 50:767–777. https://doi.org/10.1246/cl.200859

    Article  CAS  Google Scholar 

  6. Xiao F, Fontaine G, Bourbigot S (2012) Recent developments in fire retardancy of polybutylene succinate. Polym Degrad Stab 183:109466. https://doi.org/10.1016/j.polymdegradstab.2020.109466

    Article  CAS  Google Scholar 

  7. Yin G-Z, Yang X-M (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27:38. https://doi.org/10.1007/s10965-020-2004-1

    Article  CAS  Google Scholar 

  8. Bioplastics market development update (2021) https://www.european-bioplastics.org/news/publications/. Accesssed 13 Aug 2021

  9. Huda MK, Widiastuti I (2021) Natural fiber reinforced polymer in automotive application: A systematic literature review. J Phys Conf Ser 1808:012015. https://doi.org/10.1088/1742-6596/1808/1/012015

    Article  CAS  Google Scholar 

  10. Andrady AL, Neal MA (2009) Applications and societal benefits of plastics. Philos Trans R Soc B 364:1977–1984. https://doi.org/10.1098/rstb.2008.0304

    Article  CAS  Google Scholar 

  11. Spierling S, Knupffer E, Behnsen H, Mudersbach M, Krieg H, Springer S, Albrecht S, Herrmann C, Endres HJ (2018) Bio-based plastics - a review of environmental, social and economic impact assessments. J Cleaner Prod 185:476–491. https://doi.org/10.1016/j.jclepro.2018.03.014

    Article  Google Scholar 

  12. Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L (2021) Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 120:101430. https://doi.org/10.1016/j.progpolymsci.2021.101430

    Article  CAS  Google Scholar 

  13. Rameshkumar S, Shaiju P, O’Connor KE, Padamati RB (2022) Bio-based and biodegradable polymers—State-of-the-art, challenges, and emerging trends. Curr Opin Green Sustainable Chem 21(2020):75–81

  14. Sikorska W, Musioł M, Zawidlak-Węgrzyńska B, Rydz J (2021) End-of-life options for (bio) degradable polymers in the circular economy. Adv Polym Technol 6695140. https://doi.org/10.1155/2021/6695140

  15. Xu J, Guo BH (2010) Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol J 5:1149–1163. https://doi.org/10.1002/biot.201000136

    Article  CAS  PubMed  Google Scholar 

  16. Guidotti G, Soccio M, Siracusa V, Gazzano M, Salatelli E, Munari A, Lotti N (2017) Novel random PBS-based copolymers containing aliphatic side chains for sustainable flexible food packaging. Polymers 9:724. https://doi.org/10.3390/polym9120724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Santis F, Volpe V, Pantani R (2016) Polym Eng Sci 57:306–311

    Article  Google Scholar 

  18. Scarfato P, Maio LD, Milana MR, Giamberardini S, Denaro M, Incarnato L (2017) Performance properties, lactic acid specific migration and swelling by simulant of biodegradable poly(lactic acid)/ nanoclay multilayer films for food packaging. Food Addit Contam Part A Chem Anal Control Exposure Risk Assess 34:1730–1742. https://doi.org/10.1080/19440049.2017.1321786

    Article  CAS  Google Scholar 

  19. Jost VV (2018) Packaging related properties of commercially available biopolymers—An overview of the status quo, eXPRESS Polym. Lett 12:429–435. https://doi.org/10.3144/expresspolymlett.2018.36

    Article  CAS  Google Scholar 

  20. Naser AZ, Deiab I, Darras BM (2021) Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv 11:17151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. European Bioplastics conference, bioplastics market development update (2021) https://docs.european-bioplastics.org/publications/market_data/Report_Bioplastics_Market_Data_2021_short_version.pdf. Accesssed 13 Aug 2021

  22. Vilela C, Sousa AF, Fonseca A, Serra A, Cohello J, Freire C, Silvestre A (2014) The quest for sustainable polyesters – insights into the future. Polym Chem 5:3119–3141. https://doi.org/10.1039/C3PY01213A

    Article  CAS  Google Scholar 

  23. Pollet E, Averous L (2011) Production, chemistry and properties of polyhydroxyalkanoates, in Biopolym. e New Mater. Sustain. Films Coat, ed. D. Plackett, John Wiley & Sons, Ltd, Chichester, pp. 65–86. (Accessed February 16, 2016)

  24. Averous L (2004) Biodegradable multiphase systems based on plasticized starch: A review. J Macromol Sci Part C 44:231–274. https://doi.org/10.1081/MC-200029326

    Article  CAS  Google Scholar 

  25. Gigli M, Fabbri M, Lotti N, Gamberini R, Rimini B, Munari A (2016) Poly(butylene succinate)-based polyesters for biomedical applications: A review. Eur Polym J 75:431–460. https://doi.org/10.1016/j.eurpolymj.2016.01.016

    Article  CAS  Google Scholar 

  26. Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38:522–550. https://doi.org/10.1016/j.pecs.2012.02.002

    Article  CAS  Google Scholar 

  27. Caulier B, Roquette Frères S (2010) Laurent, WO Patent 2,010,092304 (A2)

  28. Top Value Added Chemicals from Biomass (2004) Volume I. Results of Screening for Potential Candidates from Sugars and Synthesis Gas, ed. T. Werpy and G. Petersen, US Department of Energy, Offfiice of Scientific and Technical Information, OSTI Id: 15008859

  29. Chen G-Q, Patel MK (2012) Plastics derived from biological sources: Present and future: A technical and environmental review. Chem Rev 112:2082–2099. https://doi.org/10.1021/cr200162d.14

    Article  CAS  PubMed  Google Scholar 

  30. Choi KY, Mcauley KB (2007) Step-growth polymerization in polymer reaction engineering, ed. J. M. Asua, Blackwell Publishing, Oxford, UK, ch. 7, pp. 273–314

  31. Aliotta L, Seggiani M, Lazzer A, Gigante V, Cinelli P (2022) Polymers 14:844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Savitha KS, Paghadar BR, Senthil Kumar M, Jagadish RL (2022) Polym Chem 13:3562–3612

    Article  CAS  Google Scholar 

  33. Jacquel N, Freyermouth F, Fenouillot F, Rousseau A, Pascault JP, Fuertes P, Saint-Loup R (2011) J Polym Sci Part A Polym Chem 49:5301–5312

    Article  CAS  Google Scholar 

  34. Lu S-F, Chen M, Chen CH (2012) J Appl Polym Sci 123:3610–3619

    Article  CAS  Google Scholar 

  35. Savitha KS, Senthil Kumar M, Jagadish RL (2022). Mater Adv. https://doi.org/10.1039/D2MA00757F

    Article  Google Scholar 

  36. Bulut G, Kayan A (2008) Open Polym Sci J 1:28–32

    Google Scholar 

  37. Mehrotra RC (1954) J Am Chem Soc 76(8):2266–2267

    Article  CAS  Google Scholar 

  38. Amarasekara AS (2016) Chem Rev 116:6133–6183

    Article  CAS  PubMed  Google Scholar 

  39. Ratti R (2014) Adv Chem 729842:16

    Google Scholar 

  40. Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Chem Commun 2010–2011

  41. Jansen JH, Powell AB, Specht SE, Gerislioglu S, Hermans I (2022) ACS Sustain Chem Eng 10:2484–2493

    Article  CAS  Google Scholar 

  42. Savitha KS, Senthil Kumar M, Jagadish RL (2023) Polym Adv Technol. 34, 1492–1496

  43. Mansoori Y, Tataroglu FS, Sadaghian M (2005) Green Chem 7:870–873

    Article  CAS  Google Scholar 

  44. Lane CF, Myatt HL, Daniels J, Hopps HB (1974) J Org Chem 39:3052–3054

    Article  CAS  Google Scholar 

  45. Sabatini MT, Boulton LT, Sheppard TD (2017) Sci Adv 3:e1701028

  46. Savitha KS, Senthil Kumar MR, Jagadish L (2023) ChemistrySelect 8:e202203395

  47. Savitha KS, Senthil Kumar M, Jagadish RL (2023) Polym Adv Technol 1–5. https://doi.org/10.1002/pat.6054

  48. Savitha KS, Senthil Kumar M, Jagadish RL (2023) J Appl Polym Sci 140:e53842

Download references

Acknowledgements

K. S. Savitha Gowda, thank Sir M. Visvesvaraya Postgraduate Centre, Mandya, Karnataka, India for providing research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and Investigation – K. S. Savitha Gowda; Methodology and consultant – Dr. M. Senthil Kumar; Project administration and Supervision – Prof. Dr. R. L. Jagadish; Writing – original draft – K. S. Savitha Gowda; Review and editing – Dr. M. Senthil Kumar and Prof. Dr. R. L. Jagadish.

Corresponding authors

Correspondence to M. Senthil Kumar or R. L. Jagadish.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 824 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savitha, K.S., Kumar, M.S. & Jagadish, R.L. Ti(OBu)4 in combination with B(OBu)3: Decoding the importance of chemo-selectivity of the catalyst towards high molecular weight poly(butylene succinate) synthesis. J Polym Res 30, 197 (2023). https://doi.org/10.1007/s10965-023-03517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03517-9

Keywords

Navigation