Skip to main content
Log in

Fabrication of highly selective SPVDF-co-HFP/APTES-SiO2/Nafion nanocomposite membranes for PEM fuel cells

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyelectrolyte membrane (PEM) with improved proton conductivity and low methanol crossover are highly desirable for direct methanol fuel cells (DMFCs). Herein, the prime goal is to fabricate a ternary hybrid nanocomposite PEM by incorporating low-cost silane functionalized silica nanoparticles (AMPS) nanoparticles into the mixture of Nafion and PVDF-co-HFP, followed by sulfonation with chlorosulfonic acid which has not been reported by any earlier studies. Various physicochemical characterizations including FTIR, TGA, XRD, FESEM-EDS have been performed for the confirmation of formed sulfonated PVDF-co-HFP-AMPS-Nafion (SPAN) membranes. The initial studies including water/methanol uptake, swelling ratios, contact angle and improved ion exchange capacity (0.65 meq. g−1) confirms the hydrophilic and ion exchange properties of the SPAN membranes. The combination of highly hydrophobic partially fluorinated polymer along with hydrophilic AMPS and sulfonic acid moieties have resulted in significant improvement in proton conductivities (1.0 × 10–1 S.cm−1) and optimum methanol permeability values (8.79 × 10–7 cm2s−1) thereby exhibiting a better membrane selectivity value of 1.18 × 105 S.scm−3. Therefore, these unique SPAN membranes have the potentiality to be employed in methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

Abbreviations

APTES:

3-(Aminopropyl) triethoxysilane

AMPS:

APTES-modified pristine SiO2 nanoparticles

CA:

Contact Angle

DMF:

Dimethylformamide

DMFC:

Direct Methanol Fuel Cell

FC:

Fuel Cell

FE-SEM:

Field emission scanning electron microscope

GC:

Gas Chromatography

IC:

Ionic Conductivity

IEC:

Ion Exchange Capacity

MC:

Methanol Crossover

MEA:

Membrane Electrode Assembly

MP:

Methanol Permeability

MS:

Membrane Selectivity

MU:

Methanol Uptake

PAN:

PVDF-co-HFP-APTES-SiO2–Nafion (PAN) membrane

PEM:

Proton Exchange Membrane

PEMFC:

Polymer Electrolyte Membrane Fuel Cell

PVDF-co-HFP:

Poly(vinylidene fluoride-co-hexafluoropropylene)

SPAN:

Sulfonated PVDF-co-HFP-APTES-SiO2–Nafion membrane

SPC:

Sulfonated PVDF-co-HFP membrane

TGA:

Thermogravimetric Analysis

UTM:

Universal testing machine

WU:

Water Uptake

XRD:

X-ray powder diffraction

EDS:

Energy dispersive X-ray analysis

References

  1. Kumar P, Dutta K, Kundu PP (2014) Enhanced performance of direct methanol fuel cells: a study on the combined effect of various supporting electrolytes, flow channel designs and operating temperatures. Int J Energy Res 38:41–50. https://doi.org/10.1002/er.3034

    Article  CAS  Google Scholar 

  2. Kumar P, Dutta K, Das S, Kundu PP (2014) An overview of unsolved deficiencies of direct methanol fuel cell technology: factors and parameters affecting its widespread use. Int J Energy Res 38:1367–1390. https://doi.org/10.1002/er.3163

    Article  CAS  Google Scholar 

  3. Li J, Cai W, Ma L et al (2015) Towards neat methanol operation of direct methanol fuel cells: A novel self-assembled proton exchange membrane. Chem Commun 51:6556–6559. https://doi.org/10.1039/c4cc09420d

    Article  CAS  Google Scholar 

  4. Rath R, Kumar P, Mohanty S, Nayak SK (2019) Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors. Int J Energy Res 43:8931–8955. https://doi.org/10.1002/er.4795

    Article  Google Scholar 

  5. Kamarudin SK, Achmad F, Daud WRW (2009) Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int J Hydrogen Energy 34:6902–6916. https://doi.org/10.1016/j.ijhydene.2009.06.013

    Article  CAS  Google Scholar 

  6. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications - A review. J Memb Sci 259:10–26. https://doi.org/10.1016/j.memsci.2005.01.035

    Article  CAS  Google Scholar 

  7. Kumar P, Jagwani SK, Kundu PP (2015) A study on the heat behaviour of PEM, prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion, for its high temperature application in DMFC. Mater Today Commun 2:e1–e8. https://doi.org/10.1016/j.mtcomm.2014.10.002

    Article  CAS  Google Scholar 

  8. Jung DH, Cho SY, Peck DH et al (2003) Preparation and performance of a Nafion®/montmorillonite nanocomposite membrane for direct methanol fuel cell. J Power Sources 118:205–211. https://doi.org/10.1016/S0378-7753(03)00095-8

    Article  CAS  Google Scholar 

  9. Rath R, Kumar P, Unnikrishnan L et al (2020) Current scenario of poly (2,5-benzimidazole) (ABPBI) as prospective PEM for application in HT-PEMFC. Polym Rev 60:267–317. https://doi.org/10.1080/15583724.2019.1663211

    Article  CAS  Google Scholar 

  10. Tang H, Pan M, Lu S et al (2010) One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuel cells. Chem Commun 46:4351–4353. https://doi.org/10.1039/c003129a

    Article  CAS  Google Scholar 

  11. Das S, Kumar P, Dutta K, Kundu PP (2014) Partial sulfonation of PVdF-co-HFP: A preliminary study and characterization for application in direct methanol fuel cell. Appl Energy 113:169–177. https://doi.org/10.1016/j.apenergy.2013.07.030

    Article  CAS  Google Scholar 

  12. Dutta K, Das S, Kumar P, Kundu PP (2014) Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: A preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP. Appl Energy 118:183–191. https://doi.org/10.1016/j.apenergy.2013.12.029

    Article  CAS  Google Scholar 

  13. Kumar P, Kundu PP (2015) Coating and lamination of Nafion117 with partially sulfonated PVdF for low methanol crossover in DMFC applications. Electrochim Acta 173:124–130. https://doi.org/10.1016/j.electacta.2015.05.044

    Article  CAS  Google Scholar 

  14. Kumar P, Dutta K, Das S, Kundu PP (2014) Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion: A preliminary evaluation for application in DMFC. Appl Energy 123:66–74. https://doi.org/10.1016/j.apenergy.2014.02.060

    Article  CAS  Google Scholar 

  15. Xu G, Li S, Li J et al (2019) Targeted filling of silica in Nafion by a modified: In situ sol-gel method for enhanced fuel cell performance at elevated temperatures and low humidity. Chem Commun 55:5499–5502. https://doi.org/10.1039/c9cc01221d

    Article  CAS  Google Scholar 

  16. Yuan D, Liu Z, Tay SW et al (2013) An amphiphilic-like fluoroalkyl modified SiO2 nanoparticle@Nafion proton exchange membrane with excellent fuel cell performance. Chem Commun 49:9639–9641. https://doi.org/10.1039/c3cc45138k

    Article  CAS  Google Scholar 

  17. Rath R, Kumar P, Unnikrishnan L et al (2021) Functionalized poly(vinylidene fluoride) for selective proton-conducting membranes. Mater Chem Phys 260:124148. https://doi.org/10.1016/j.matchemphys.2020.124148

    Article  CAS  Google Scholar 

  18. Ahmad AL, Farooqui UR, Hamid NA (2018) Effect of graphene oxide (GO) on Poly(vinylidene fluoride-hexafluoropropylene) (PVDF- HFP) polymer electrolyte membrane. Polymer (Guildf) 142:330–336. https://doi.org/10.1016/j.polymer.2018.03.052

    Article  CAS  Google Scholar 

  19. Aravindan V, Vickraman P (2008) Characterization of SiO2 and Al2O3 incorporated PVdF-HFP based composite polymer electrolytes with LiPF3(CF3CF2)3. J Appl Polym Sci 108:1314–1322. https://doi.org/10.1002/app.27824

    Article  CAS  Google Scholar 

  20. Farooqui UR, Ahmad AL, Hamid NA (2017) Effect of polyaniline (PANI) on Poly(vinylidene fluoride-co-hexaflouro propylene) (PVDF-co-HFP) polymer electrolyte membrane prepared by breath figure method. Polym Test 60:124–131. https://doi.org/10.1016/j.polymertesting.2017.03.012

    Article  CAS  Google Scholar 

  21. Shalu SVK, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3:7305–7318. https://doi.org/10.1039/c5tc00940e

    Article  CAS  Google Scholar 

  22. Luo Q, Zhang H, Chen J et al (2008) Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery. J Memb Sci 325:553–558. https://doi.org/10.1016/j.memsci.2008.08.025

    Article  CAS  Google Scholar 

  23. Larkin PJ (2018) IR and Raman Spectra–Structure Correlations. In: Infrared and Raman Spectroscopy. Elsevier, pp 85–134

  24. Hoque NA, Thakur P, Bala N et al (2016) Tunable photoluminescence emissions and large dielectric constant of the electroactive poly(vinylidene fluoride–hexafluoropropylene) thin films modified with SnO 2 nanoparticles. RSC Adv 6:29931–29943. https://doi.org/10.1039/c5ra27883j

    Article  CAS  Google Scholar 

  25. Peleš A, Aleksić O, Pavlović VP et al (2018) Structural and electrical properties of ferroelectric poly(vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films. Phys Scr 93. https://doi.org/10.1088/1402-4896/aad749

  26. Kumar P, Singh AD, Kumar V, Kundu PP (2015) Incorporation of nano-Al<inf>2</inf>O<inf>3</inf> within the blend of sulfonated-PVdF-co-HFP and Nafion for high temperature application in DMFCs. RSC Adv 5:63465–63472. https://doi.org/10.1039/c5ra07992f

    Article  CAS  Google Scholar 

  27. Liu D, Geng L, Fu Y et al (2011) Novel nanocomposite membranes based on sulfonated mesoporous silica nanoparticles modified sulfonated polyimides for direct methanol fuel cells. J Memb Sci 366:251–257. https://doi.org/10.1016/j.memsci.2010.10.016

    Article  CAS  Google Scholar 

  28. Wang H, Holmberg BA, Huang L et al (2002) Nafion-bifunctional silica composite proton conductive membranes. J Mater Chem 12:834–837. https://doi.org/10.1039/b107498a

    Article  CAS  Google Scholar 

  29. Toh MJ, Oh PC, Mohd Shaufi MIS (2020) Preparation of highly hydrophobic PVDF-HFP membrane with anti-wettability characteristic. IOP Conf Ser Mater Sci Eng 778. https://doi.org/10.1088/1757-899X/778/1/012176

  30. Jiang R, Kunz HR, Fenton JM (2006) Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells. J Memb Sci 272:116–124. https://doi.org/10.1016/j.memsci.2005.07.026

    Article  CAS  Google Scholar 

  31. Chuang SW, Hsu SLC, Liu YH (2007) Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells. J Memb Sci 305:353–363. https://doi.org/10.1016/j.memsci.2007.08.033

    Article  CAS  Google Scholar 

  32. Hariprasad R, Vinothkannan M, Kim AR, Yoo DJ (2020) SPVdF-HFP/SGO nanohybrid proton exchange membrane for the applications of direct methanol fuel cells. J Dispers Sci Technol 42:33–45. https://doi.org/10.1080/01932691.2019.1660672

    Article  CAS  Google Scholar 

  33. Kumar GG, Kim P, Kim A et al (2009) Structural, thermal and ion transport studies of different particle size nanocomposite fillers incorporated PVdF-HFP hybrid membranes. Mater Chem Phys 115:40–46. https://doi.org/10.1016/j.matchemphys.2008.11.023

    Article  CAS  Google Scholar 

  34. Bagheri A, Javanbakht M, Beydaghi H et al (2016) Sulfonated poly(etheretherketone) and sulfonated polyvinylidene fluoride-: Co -hexafluoropropylene based blend proton exchange membranes for direct methanol fuel cell applications. RSC Adv 6:39500–39510. https://doi.org/10.1039/c6ra00038j

    Article  CAS  Google Scholar 

  35. Ma W, Zhang J, Chen S, Wang X (2008) Crystalline phase formation of poly(vinylidene fluoride) from tetrahydrofuran/N, N-dimethylformamide mixed solutions. J Macromol Sci Part B Phys 47:434–449. https://doi.org/10.1080/00222340801954811

    Article  CAS  Google Scholar 

  36. Prakash O, Jana KK, Jain R et al (2018) Functionalized poly(vinylidene fluoride-co-hexafluoro propylene) membrane for fuel cell. Polymer (Guildf) 151:261–268. https://doi.org/10.1016/j.polymer.2018.07.086

    Article  CAS  Google Scholar 

  37. Kubo W, Yamauchi K, Kumagai K et al (2010) Imaging of ionic channels in proton exchange membranes by the nickel replica method. J Phys Chem C 114:2370–2374. https://doi.org/10.1021/jp9082695

    Article  CAS  Google Scholar 

  38. Ahmad M, Qaiser AA, Huda NU, Saeed A (2020) Heterogeneous ion exchange membranes based on thermoplastic polyurethane (TPU): Effect of PSS/DVB resin on morphology and electrodialysis. RSC Adv 10:3029–3039. https://doi.org/10.1039/c9ra06178a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Amiinu IS, Li W, Wang G et al (2015) Toward anhydrous proton conductivity based on imidazole functionalized mesoporous Silica/Nafion composite membranes. Electrochim Acta 160:185–194. https://doi.org/10.1016/j.electacta.2015.02.070

    Article  CAS  Google Scholar 

  40. Joseph J, Tseng CY, Hwang BJ (2011) Phosphonic acid-grafted mesostructured silica/Nafion hybrid membranes for fuel cell applications. J Power Sources 196:7363–7371. https://doi.org/10.1016/j.jpowsour.2010.08.090

    Article  CAS  Google Scholar 

  41. Pandey M, Joshi GM, Deshmukh K et al (2014) Optimized AC conductivity correlated to structure, morphology and thermal properties of PVDF/PVA/Nafion composites. Ionics (Kiel) 20:1427–1433. https://doi.org/10.1007/s11581-014-1111-6

    Article  CAS  Google Scholar 

  42. Pandey J, Mir FQ, Shukla A (2014) Performance of PVDF supported silica immobilized phosphotungstic acid membrane (Si-PWA/PVDF) in direct methanol fuel cell. Int J Hydrogen Energy 39:17306–17313. https://doi.org/10.1016/j.ijhydene.2014.08.046

    Article  CAS  Google Scholar 

  43. Martina P, Gayathri R, Pugalenthi MR et al (2020) Nanosulfonated silica incorporated SPEEK/SPVdF-HFP polymer blend membrane for PEM fuel cell application. Ionics Kiel 26:3447–3458. https://doi.org/10.1007/s11581-020-03478-9

    Article  CAS  Google Scholar 

  44. Mariappan RP, Liu C, Cao G, Manimuthu RP (2020) Tailoring SPEEK/SPVdF-co-HFP/La2Zr2O7 ternary composite membrane for cation exchange membrane fuel cells. Ind Eng Chem Res 59:4881–4894. https://doi.org/10.1021/acs.iecr.9b06922

    Article  CAS  Google Scholar 

  45. Wang H, Li X, feng X, et al (2018) Novel proton-conductive nanochannel membranes with modified SiO2 nanospheres for direct methanol fuel cells. J Solid State Electrochem 22:3475–3484. https://doi.org/10.1007/s10008-018-4057-1

    Article  CAS  Google Scholar 

  46. Uma Devi A, Divya K, Rana D et al (2018) Highly selective and methanol resistant polypyrrole laminated SPVdF-co-HFP/PWA proton exchange membranes for DMFC applications. Mater Chem Phys 212:533–542. https://doi.org/10.1016/j.matchemphys.2018.03.086

    Article  CAS  Google Scholar 

  47. Devi AU, Divya K, Kaleekkal NJ et al (2018) Tailored SPVdF-co-HFP/SGO nanocomposite proton exchange membranes for direct methanol fuel cells. Polymer Guildf 140:22–32. https://doi.org/10.1016/j.polymer.2018.02.024

    Article  CAS  Google Scholar 

  48. Uma Devi A, Muthumeenal A, Sabarathinam RM, Nagendran A (2017) Fabrication and electrochemical properties of SPVdF-co-HFP/SPES blend proton exchange membranes for direct methanol fuel cells. Renew Energy 102:258–265. https://doi.org/10.1016/j.renene.2016.10.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. R. gratefully acknowledges the Department of Science & Technology (DST), Government of India, for providing the fellowship (DST/INSPIRE Fellowship/2017/IF170468). The authors would like to thank MNIT-JAIPUR, INDIA, for FESEM-EDS characterization and also acknowledge Dr. Sarada Srinivasan Pati and Bhabani Shankar Panda, SPCB-Bhubaneswar, Odisha for the GC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalin Rath.

Ethics declarations

Conflicts of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• A new hybrid solid nanocomposite membrane consisting of PVDF-co-HFP-APTES-SiO2-Nafion has been designed.

• The membranes have the highest proton conductivity at elevated temperature (1.58 × 10–1 S.cm−1 at 85 °C).

• The methanol crossover has been reduced by 87.44% and selectivity is improved by 777% than the Nafion membranes.

• The membranes have a reduced methanol crossover value (8.76 × 10–7 cm2s−1) and higher selectivity ratio (1.15 × 105 S.scm−3).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 607 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, R., Kumar, P., Unnikrishnan, L. et al. Fabrication of highly selective SPVDF-co-HFP/APTES-SiO2/Nafion nanocomposite membranes for PEM fuel cells. J Polym Res 30, 135 (2023). https://doi.org/10.1007/s10965-023-03509-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03509-9

Keywords

Navigation