Skip to main content
Log in

Surface modified alpha zirconium phosphate (α-ZrP) reinforced natural rubber composites for tire tread application

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The filler-rubber interaction and filler dispersion in natural rubber composites are important factors in determining the properties. Herein, an inorganic–organic hybrid filler was synthesized by attachment of styrene oxide to the surface of alpha zirconium phosphate nanoplatelets, and then it was incorporated in natural rubber/carbon black composites. The effect of surface modified zirconium phosphate on the morphology, thermal and mechanical properties of the composites were investigated using the scanning electron microscope, thermal gravimetric analysis, tensile tests and dynamic mechanical analysis. The scanning electron microscope analysis indicates that surface modified zirconium phosphate greatly improved the dispersion of carbon black in the composites. The addition of surface modified zirconium phosphate leads to the improvement of the abrasion resistance, tensile strength, elongation at break and dynamic mechanical properties of the composites. Furthermore, the low content of surface modified zirconium phosphate significantly improved the abrasion resistance, wet grip resistance and decreased rolling resistance of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Rajan KP, Gopanna A, Theravalappil R, Abdelghani EA, Thomas SP (2022) Partial replacement of carbon black with graphene in natural rubber/butadiene rubber based tire compound: Investigation of critical properties. J Polym Res 29:1–17

    Article  Google Scholar 

  2. Jung J, Sodano HA (2020) Aramid nanofiber reinforced rubber compounds for the application of tire tread with high abrasion resistance and fuel saving efficiency. ACS Appl Polym Mater 2:4874–4884

    Article  CAS  Google Scholar 

  3. Nair V, Kumar K, Subramaniam C (2019) Mechanochemically controlling the van der Waals gap in molybdenum disulfide nanosheets. Phys Rev Mater 3:015802

    Article  CAS  Google Scholar 

  4. Ten Brinke J, Debnath S, Reuvekamp LA, Noordermeer JW (2003) Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos Sci Technol 63:1165–1174

    Article  Google Scholar 

  5. Ramesan M (2005) The effects of filler content on cure and mechanical properties of dichlorocarbene modified styrene butadiene rubber/carbon black composites. J Polym Res 11:333–340

    Article  Google Scholar 

  6. Sattayanurak S, Sahakaro K, Kaewsakul W, Dierkes WK, Reuvekamp LA, Blume A, Noordermeer JW (2020) Synergistic effect by high specific surface area carbon black as secondary filler in silica reinforced natural rubber tire tread compounds. Polym Test 81:106173

    Article  CAS  Google Scholar 

  7. Al-Ghamdi AA, Al-Hartomy OA, Al-Solamy FR, Dishovsky N, Mihaylov M, Atanasov N, Atanasova G, Nihtianova D (2016) Microwave properties of natural rubber based composites comprising conductive carbon black/silica hybrid fillers. J Polym Res 23:1–12

    Article  CAS  Google Scholar 

  8. Liu Y, Li L, Wang Q, Zhang X (2011) Fracture properties of natural rubber filled with hybrid carbon black/nanoclay. J Polym Res 18:859–867

    Article  CAS  Google Scholar 

  9. Romyen N, Thongyai S, Praserthdam P (2010) Surfactant-dispersed carbon black in polyimide nanocomposites: Spectroscopic monitoring of the dispersion state in the polymer matrix. J Appl Polym Sci 115:1622–1629

    Article  CAS  Google Scholar 

  10. Kang S, Jones AR, Moore JS, White SR, Sottos NR (2014) Microencapsulated carbon black suspensions for restoration of electrical conductivity. Adv Funct Mater 24:2947–2956

    Article  CAS  Google Scholar 

  11. Lei Y, Guo B, Liu X, Jia D (2009) Structure evolution of carbon black under ionic-liquid-assisted microwave irradiation. Appl Surf Sci 255:8488–8493

    Article  CAS  Google Scholar 

  12. Nawani P, Burger C, Rong L, Hsiao BS, Tsou AH (2015) Structure and permeability relationships in polymer nanocomposites containing carbon black and organoclay. Polym 64:19–28

    Article  CAS  Google Scholar 

  13. Ayippadath Gopi J, Patel SK, Chandra AK, Tripathy DK (2011) SBR-clay-carbon black hybrid nanocomposites for tire tread application. J Polym Res 18:1625–1634

    Article  Google Scholar 

  14. Spratte T, Plagge J, Wunde M, Klüppel M (2017) Investigation of strain-induced crystallization of carbon black and silica filled natural rubber composites based on mechanical and temperature measurements. Polym 115:12–20

    Article  CAS  Google Scholar 

  15. Gao J, He Y, Gong X, Xu J (2017) The role of carbon nanotubes in promoting the properties of carbon black-filled natural rubber/butadiene rubber composites. Results Phys 7:4352–4358

    Article  Google Scholar 

  16. Wu X, Lu C, Han Y, Zhou Z, Yuan G, Zhang X (2016) Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Compos Sci Technol 124:44–51

    Article  CAS  Google Scholar 

  17. Valentini L, Bon SB, López-Manchado MA, Verdejo R, Pappalardo L, Bolognini A, Alvino A, Borsini S, Berardo A, Pugno N (2016) Synergistic effect of graphene nanoplatelets and carbon black in multifunctional EPDM nanocomposites. Compos Sci Technol 128:123–130

    Article  CAS  Google Scholar 

  18. Ravikumar K, Palanivelu K,Ravichandran K (2015) Vulcanization, mechanical and dielectric properties of carbon black/nanoclay reinforced natural rubber hybrid composites. Appl Mech Mater. Trans Tech Publications

  19. Kim S, Yoo H (2021) Self-assembled monolayers: Versatile uses in electronic devices from gate dielectrics, dopants, and biosensing linkers. Micromachines 12:565

    Article  PubMed  PubMed Central  Google Scholar 

  20. Surya I, Muniyadi M, Ismail H (2021) A review on clay-reinforced ethylene propylene diene terpolymer composites. Polym Compos 42:1698–1711

    Article  CAS  Google Scholar 

  21. Zhu Z, Baker J, Liu C, Zhao M, Kotaki M, Sue H-J (2021) High performance epoxy nanocomposites based on dual epoxide modified α-Zirconium phosphate nanoplatelets. Polym 212:123154

    Article  CAS  Google Scholar 

  22. Clearfield A, Duax W, Medina A, Smith GD, Thomas J (1969) Mechanism of ion exchange in crystalline zirconium phosphates. I. Sodium ion exchange of. alpha.-zirconium phosphate. J Phys Chem 73:3424–3430

    Article  CAS  Google Scholar 

  23. Terban MW, Shi C, Silbernagel R, Clearfield A, Billinge SJ (2017) Local environment of terbium (III) ions in layered nanocrystalline zirconium (IV) phosphonate–phosphate ion exchange materials. Inorg Chem 56:8837–8846

    Article  CAS  PubMed  Google Scholar 

  24. Najafi H, Farajfaed S, Zolgharnian S, Mirak SHM, Asasian-Kolur N, Sharifian S (2021) A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes. Process Saf Environ Prot 147:8–36

    Article  CAS  Google Scholar 

  25. Casciola M, Alberti G, Donnadio A, Pica M, Marmottini F, Bottino A, Piaggio P (2005) Gels of zirconium phosphate in organic solvents and their use for the preparation of polymeric nanocomposites. J Mater Chem 15:4262–4267

    Article  CAS  Google Scholar 

  26. Cruz E, Broker EJ, Mosby BM (2020) Combination of intercalation and surface modification in layered zirconium phosphates: investigation of surface stability and reactivity. Dalton Trans 49:3841–3848

    Article  CAS  PubMed  Google Scholar 

  27. Boo WJ, Sun L, Liu J, Clearfield A, Sue H-J (2007) Effective intercalation and exfoliation of nanoplatelets in epoxy via creation of porous pathways. J Phys Chem C 111:10377–10381

    Article  CAS  Google Scholar 

  28. Bongiovanni R, Casciola M, Di Gianni A, Donnadio A, Malucelli G (2009) Epoxy-nanocomposites containing exfoliated zirconium phosphate: Preparation via cationic photopolymerisation and physicochemical characterisation. Eur Polym J 45:2487–2493

    Article  CAS  Google Scholar 

  29. Sun L, Boo WJ, Sue H-J, Clearfield A (2007) Preparation of α-zirconium phosphate nanoplatelets with wide variations in aspect ratios. New J Chem 31:39–43

    Article  CAS  Google Scholar 

  30. Wang H, Zou M, Li N, Li K (2007) Preparation and characterization of ionic liquid intercalation compounds into layered zirconium phosphates. J mater sci 42:7738–7744

    Article  CAS  Google Scholar 

  31. Haiyan W, Daxiong H, Na L, Ke-An L (2005) Study on the intercalation and interlayer state of porphyrins into α-zirconium phosphate. J Incl Phenom 52:247–252

    Article  Google Scholar 

  32. Zhang H, Li K, Wang M, Zhang J (2021) The preparation of a composite flame retardant of layered double hydroxides and α-zirconium phosphate and its modification for epoxy resin. Mater Today Commun 28:102711

    Article  CAS  Google Scholar 

  33. Xing W, Song L, Lv X, Wang X, Hu Y (2011) Preparation, combustion and thermal behaviors of UV-cured coatings containing organically modified α-ZrP. J Polym Res 18:179–185

    Article  CAS  Google Scholar 

  34. Ou J, Ge C, Kong Z, Chen Y, Dai Z (2020) Synthesis of a novel α-zirconium phosphate and investigation of influence on thermal stability of addition cured silicon rubber. J Therm Anal Calorim 139:2079–2087

    Article  CAS  Google Scholar 

  35. Liu T, Zeng X, Lai X, Li H, Wu T (2019) Improvement of platinum nanoparticles-immobilized α-zirconium phosphate sheets on tracking and erosion resistance of silicone rubber. Compos B Eng 176:107203

    Article  CAS  Google Scholar 

  36. Brandão LS, Mendes LC, Medeiros ME, Sirelli L, Dias ML (2006) Thermal and mechanical properties of poly (ethylene terephthalate)/lamellar zirconium phosphate nanocomposites. J Appl Polym Sci 102:3868–3876

    Article  Google Scholar 

  37. Kale MB, Divakaran N, Mubarak S, Dhamodharan D, Senthil T, Wu L (2020) Waterborne polyurethane nanocomposite reinforced with amine intercalated α-zirconium phosphate-Study of thermal and mechanical properties. Polym 186:122008

    Article  CAS  Google Scholar 

  38. Freitas DF, Mattos GC, Mendes LC (2021) Investigation on miscibility, thermal, crystallographic diffraction and dynamic-mechanical properties of poly (vinyl alcohol)/poly (vinylpyrrolidone)/zirconium phosphate nanocomposites. J Therm Anal Calorim 145:319–329

    Article  CAS  Google Scholar 

  39. Mosby BM, Díaz A, Bakhmutov V, Clearfield A (2013) Surface functionalization of zirconium phosphate nanoplatelets for the design of polymer fillers. ACS Appl Mater Interfaces 6:585–592

    Article  PubMed  Google Scholar 

  40. Harrold ND, Li Y, Chisholm MH (2013) Studies of ring-opening reactions of styrene oxide by chromium tetraphenylporphyrin initiators. Mechanistic and stereochemical considerations Macromolecules 46:692–698

    CAS  Google Scholar 

  41. Gérard J, Espuche E (2012) Modification of α-ZrP nanofillers by amines of different chain length: Consequences on the morphology and mechanical properties of styrene butadiene rubber based nanocomposites. Eur Polym J 48:217–227

    Article  Google Scholar 

  42. Dal Pont K, Gérard JF, Espuche E (2013) Microstructure and properties of styrene-butadiene rubber based nanocomposites prepared from an aminosilane modified synthetic lamellar nanofiller. J Polym Sci B Polym Phys 51:1051–1059

    Article  Google Scholar 

  43. Krogh Andersen AM, Norby P, Hanson JC, Vogt T (1998) Preparation and characterization of a new 3-dimensional zirconium hydrogen phosphate, τ-Zr (HPO4)2. Determination of the complete crystal structure combining synchrotron X-ray single-crystal diffraction and neutron powder diffraction. Inorg Chem 37:876–881

    Article  Google Scholar 

  44. Clearfield A, Costantino U (1996) In solid-state supramolecular chemistry: Two- and three-dimensional inorganic networks, 1st ed.; Alberti G, Bein T (Eds) Pergamon Press: Oxford, 7:111−112

  45. Liu Y, Lu C, Hou W, Zhu J-J (2008) Direct electron transfer of hemoglobin in layered α-zirconium phosphate with a high thermal stability. Anal Biochem 375:27–34

    Article  CAS  PubMed  Google Scholar 

  46. Horsley S, Nowell D, Stewart D (1974) The infrared and Raman spectra of α-zirconium phosphate. Spectrochim Acta A Mol Biomol Spectrosc 30:535–541

    Article  Google Scholar 

  47. Patel H, Chudasama UMA (2007) A comparative study of proton transport properties of metal (IV) phosphates. J Chem Sci 119(1):35–40

    Article  CAS  Google Scholar 

  48. Clearfield A, Pack S (1975) Factors determining ion exchange selectivity—I high temperature phases formed by α-zirconium phosphate and its sodium and potassium exchanged forms. J Inorg Nucl Chem 37:1283–1290

    Article  CAS  Google Scholar 

  49. Sharif J, Yunus WMZW, Dahlan KZHM, Ahmad MH (2005) Preparation and properties of radiation crosslinked natural rubber/clay nanocomposites. Polym Test 24:211–217

    Article  CAS  Google Scholar 

  50. Mishra S, Shimpi N, Patil U (2007) Effect of nano CaCO3 on thermal properties of styrene butadiene rubber (SBR). J Polym Res 14:449–459

    Article  CAS  Google Scholar 

  51. Contreras-Ramirez A, Tao S, Day GS, Bakhmutov VI, Billinge SJ, Zhou H-C (2019) Zirconium phosphate: the pathway from Turbostratic disorder to crystallinity. Inorg Chem 58:14260–14274

    Article  CAS  PubMed  Google Scholar 

  52. Somasekharan L, Xavier P, Bose S, Zachariah AK, Kalarikkal N, Anil Kumar S, Thomas S (2020) Natural rubber nanocomposites with MWCNT@ POSS hybrid filler: Preparation and properties. Polym Compos 41:369–380

    Article  CAS  Google Scholar 

  53. Wang W, Zhang Y, Zhang Y, Sun J (2022) Activated calcium silicate/natural rubber composites prepared via latex compounding: Static and dynamic mechanical properties. J Polym Res 29:1–17

    Article  Google Scholar 

  54. Kueseng P, Sae-Oui P, Sirisinha C, Jacob KI, Rattanasom N (2013) Anisotropic studies of multi-wall carbon nanotube (MWCNT)-filled natural rubber (NR) and nitrile rubber (NBR) blends. Polym Test 32:1229–1236

    Article  CAS  Google Scholar 

  55. Yu P, He H, Jia Y, Tian S, Chen J, Jia D, Luo Y (2016) A comprehensive study on lignin as a green alternative of silica in natural rubber composites. Polym Test 54:176–185

    Article  CAS  Google Scholar 

  56. Kapgate BP, Das C (2014) Reinforcing efficiency and compatibilizing effect of sol–gel derived in situ silica for natural rubber/chloroprene rubber blends. RSC Adv 4:58816–58825

    Article  CAS  Google Scholar 

  57. Tk S, Naskar K (2021) Zinc oxide with various surface characteristics and its role on mechanical properties, cure-characteristics, and morphological analysis of natural rubber/carbon black composites. J Polym Res 28:1–14

    Google Scholar 

  58. Bahl K, Miyoshi T, Jana SC (2014) Hybrid fillers of lignin and carbon black for lowering of viscoelastic loss in rubber compounds. Polym 55:3825–3835

    Article  CAS  Google Scholar 

  59. Rattanasom N, Ta S, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26:369–377

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2709 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, Z.U., Jiang, Y., Zia-ul-Haq, M. et al. Surface modified alpha zirconium phosphate (α-ZrP) reinforced natural rubber composites for tire tread application. J Polym Res 30, 121 (2023). https://doi.org/10.1007/s10965-023-03502-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03502-2

Keywords

Navigation