Skip to main content
Log in

Synthesis, characterization and catalytic application of functionalized polyureas

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyureas are an emerging class of materials which have broad potential applications because of their versatility, complex internal structures. Here polyureas are prepared by the reaction of hexamethylene diisocyanate with either aliphatic or aromatic diamines. Multiple characterization techniques revealed that polyurea materials are porous in nature and stable up to 250 ℃. Further, CP TOSS (Cross Polarized Total Sideband Suppression) 13C solid state NMR revealed the formation of polyurea. PXRD showed that some polyureas were crystalline and formed a network structure through hydrogen bonds which served as a cross linker. Their highly insoluble nature in polar and non-polar solvents, layered structure makes them apt heterogeneous catalysts. A higher catalytic performance was detected in Knoevenagel condensation reaction between aromatic aldehyde and malononitrile in the presence of polyurea. A decrease in the catalytic activity was detected in the 7th recycle tentatively due to the adsorption of water molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the spectral data are available with the corresponding author.

References

  1. Li B, Cao P-F, Saito T, Sokolov AP (2023) Chem Rev 123:701–735

    Article  CAS  PubMed  Google Scholar 

  2. Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B (2019) Prog Polym Sci 90:211–268

    Article  CAS  Google Scholar 

  3. Iqbal N, Tripathi M, Parthasarathy S, Kumar D, Roy PK (2018) ChemistrySelect 3:1976–1982

    Article  CAS  Google Scholar 

  4. Sánchez-Ferrer A, Soprunyuk V, Engelhardt M, Stehle R, Gilg HA, Schranz W, Richter K (2021) ACS Appl Polym Mater 3:4070–4078

    Article  Google Scholar 

  5. Toader G, Rusen E, Teodorescu M, Diacon A, Stanescu PO, Rotariu T, Rotariu A (2016) J Appl Polym Sci 133:43967–43969

    Article  Google Scholar 

  6. Streitwieser A, Heathcock CH, Kosower EM (1992) Introduction to organic chemistry, 4th edn. Macmillan, New York, NY

    Google Scholar 

  7. Lin C, Xie K, Tang D (2022) J Appl Polym Sci 139:e52513

    CAS  Google Scholar 

  8. Hashimoto M, Imoto H, Matsukawa K, Naka K (2020) Macromolecules 53:2874–2881

    Article  CAS  Google Scholar 

  9. Zhang V, Kang B, Accardo JV, Kalow JA (2022) J Am Chem Soc 144(49):22358–22377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jiang S, Wang S, Du G, Hu M, Qian Z, Shi Z, Zhou X, Li T (2022) ACS Sustain Chem Eng 10:7205–7214

    Article  CAS  Google Scholar 

  11. Jandaghian MH, Kazerooni H (2021) J Appl Polym Sci 138:e50309

    Article  Google Scholar 

  12. Akl W, Ali M, Aldraihem O, Baz A (2021) Finite Elem Anal Des 186:103501

    Article  Google Scholar 

  13. Iqbal N, Tripathi M, Parthasarathy S, Kumar D, Roy PK (2016) RSC Adv 6:109706–109717

    Article  CAS  Google Scholar 

  14. Bonattini VH, Paula LA, De Jesus NAM, Tavers DC, Nicolella HD, Magalhaes LG, Molina EF (2020) Polym Int 69:476–484

    Article  CAS  Google Scholar 

  15. Chen Y, Zhang W-Q, Yu B-X, Zhao Y-M, Gao Z-W, Jian Y-J, Xu L-W (2016) Green Chem 18:6357–6366

    Article  CAS  Google Scholar 

  16. Ley SV, Mitchell C, Pears D, Ramarao C, Yu J-Q, Zhou W (2003) Org Lett 24:4665–4668

    Article  Google Scholar 

  17. Han H, Zhou Y, Li S, Wang Y, Kong XZ, Appl ACS (2016) Mater Interfaces 39:25714–25724

    Article  Google Scholar 

  18. Bashir MS, Jiang X, Kong XZ (2020) Eur Polym J 129:109652

    Article  CAS  Google Scholar 

  19. Lai G-H, Huang B-S, Yang T, Chou Y-C, Huang TC (2022) Catal Lett 152:3100–3109

    Article  CAS  Google Scholar 

  20. Hao L, Zhao Y, Yu B, Zhang H, Xu H, Xu J, Liu Z (2014) J Colloid Interface Sci 424:44–48

    Article  CAS  PubMed  Google Scholar 

  21. Jones G (2011) Org React 204–599

  22. Atashkar B, Zolfigol MA, Mallakpour S (2018) Mol Catalysis 452:192–246

    Article  CAS  Google Scholar 

  23. Shojaei B, Najafi M, Yazdanbakhsh A, Abtahi M, Zhang C (2021) Polym Adv Technol 32:2797–2812

    Article  CAS  Google Scholar 

  24. Wu C, Wang J, Chang P, Cheng H, Yu Y, Wu Z, Dong D, Zhao F (2012) Phys Chem Chem Phys 14:464–468

    Article  PubMed  Google Scholar 

  25. Chakraborty D, Mullangi D, Chandran C, Vaidhyanathan R (2022) ACS Omega 7:15275–15295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mondal J, Modak A, Bhaumik A (2011) J Mol Catal A: Chem 335:236–241

    Article  CAS  Google Scholar 

  27. Locatelli P, Woutters S, Lindsay C, Schroeder SLM, Hobdell JH, Saini A (2015) RSC Adv 5:41668–41676

    Article  CAS  Google Scholar 

  28. Sotomayor FJ, Cychosz KA, Thommas M (2018) Acc Mater Surf Res 3:34–50

    Google Scholar 

  29. Zheng X, Li H, Li J, Yang J, Chen Z (2023) Surf Interfaces 36:102504

    Article  Google Scholar 

  30. Wang R, Chen L, Lei Q, Shi J, Chen C (2022) Poly Engg Sci 62:664

    Article  CAS  Google Scholar 

  31. Giroto AS, Guimarães GGF, Ribeiro C (2018) J Polym Environ 26:2448

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledged CSIR under the scheme CSIR-01(2968)/19/EMR-II and IoE-BHU (6031) incentive grant for providing the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalluri V. S. Ranganath.

Ethics declarations

Conflict of interest

Authors exhibit no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10347 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Gupta, P.K., Khilari, S. et al. Synthesis, characterization and catalytic application of functionalized polyureas. J Polym Res 30, 104 (2023). https://doi.org/10.1007/s10965-023-03492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03492-1

Keywords

Navigation