Skip to main content
Log in

Effect of single-vacancy- and vacancy-adsorbed-atom-defective CNTs on the mechanical and tribological properties of NBR composites: molecular dynamics simulations

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations were used to map defect-free, single-vacancy (SV)-defective and vacancy-adsorbed-atom (VA)-defective carbon nanotubes (CNTs) using 2,2,4-trimethyl-1,2-dihydroquinoline (antioxidant RD) and nitrile-butadiene rubber (NBR) monomer models. Three groups of composites, CNT/RD/NBR, SV-CNT/RD/NBR, and VA-CNT/RD/NBR, were modeled. The mechanical and tribological properties of these composites were investigated, and the thermal-oxidative aging mechanism was analyzed via molecular dynamics (MD) simulations. The results showed that the antioxidant RD had the best protection effect on NBR in the CNT/RD/NBR composite. In addition, the Young's, bulk, and shear moduli of the CNT/RD/NBR composites were significantly improved, and the friction coefficient and wear rate were reduced compared with those of the SV-CNT/RD/NBR and VA-CNT/RD/NBR composites. The mean square displacement, radial distribution function, and relative concentration distribution within the three composites were also calculated separately. The effects of SV-CNTs and VA-CNTs on the NBR composite matrices were elucidated from a microscopic perspective. The results showed that the introduction of SV and VA defects reduced the interfacial interaction of NBR composites and alleviated the antioxidant RD dispersion and migration within the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

Data used in this study will be made available upon request.

References

  1. Wei X, Peng P, Peng F et al (2021) Natural polymer Eucommia ulmoides rubber: a novel material. J Agric Food Chem 69(13):3797–3821. https://doi.org/10.1021/acs.jafc.0c07560

    Article  CAS  PubMed  Google Scholar 

  2. Niu H, Ren Y, Guo H et al (2020) Recent progress on thermally conductive and electrical insulating rubber composites: Design, processing, and applications. Compos Commun 22:100430. https://doi.org/10.1016/j.coco.2020.100430

    Article  Google Scholar 

  3. Pinedo B, Hadfield M, Tzanakis I et al (2018) Thermal analysis and tribological investigation on TPU and NBR elastomers applied to sealing applications. Tribol Int 127:24–36. https://doi.org/10.1016/j.triboint.2018.05.032

    Article  CAS  Google Scholar 

  4. Ghamarpoor R, Jamshidi M (2022) Preparation of Superhydrophobic/Superoleophilic nitrile rubber (NBR) nanocomposites contained silanized nano silica for efficient oil/water separation. Sep Purif Technol 291:120854. https://doi.org/10.1016/j.seppur.2022.120854

    Article  CAS  Google Scholar 

  5. Amin LMN, Ismail H, Nadras O (2018) Comparative study of Bentonite filled acrylonitrile butadiene rubber and carbon black filled NBR composites properties. Int J Automot Mech Eng 15(3):5468–5479.https://doi.org/10.15282/ijame.15.3.2018.5.0420

  6. Hadi FA, Kadhim RG (2019) A study of the effect of nano zinc oxide on cure characteristics and mechanical properties of rubber composites. J Phys Conf Ser 1234(1):012043. https://doi.org/10.1088/1742-6596/1234/1/012043

    Article  CAS  Google Scholar 

  7. Lee YS, Ha KR (2021) Effects of acrylonitrile content on thermal characteristics and thermal aging properties of carbon black-filled NBR composite. J Elastomers Plast 53(5):402–416. https://doi.org/10.1177/0095244320941243

    Article  CAS  Google Scholar 

  8. Luo K, You G, Zhao X et al (2019) Synergistic effects of antioxidant and silica on enhancing thermo-oxidative resistance of natural rubber: Insights from experiments and molecular simulations. Mater Des 181:107944. https://doi.org/10.1016/j.matdes.2019.107944

    Article  CAS  Google Scholar 

  9. Ding P, Zou Y, He J et al (2022) Effects of a novel chitosan based macromolecule antioxidant COS-GMMP on the thermo-oxidative aging of styrene-butadiene rubber/silica composites. Polym Degrad Stab 195:109813. https://doi.org/10.1016/j.polymdegradstab.2021.109813

    Article  CAS  Google Scholar 

  10. Sirin O, Paul DK, Kassem E (2018) State of the art study on aging of asphalt mixtures and use of antioxidant additives. Adv Civ Eng. https://doi.org/10.1155/2018/3428961

    Article  Google Scholar 

  11. Luo Y, Wang JP, Cui X et al (2021) Surface-modified mesoporous silica nanorods for the highly aging resistance rubber through controlled release of antioxidant. Polym Adv Technol 32(9):3384–3391. https://doi.org/10.1002/pat.5348

    Article  CAS  Google Scholar 

  12. Li Y, Wang S, Wang Q et al (2016) Molecular dynamics simulations of tribology properties of NBR (Nitrile-Butadiene Rubber)/carbon nanotube composites. Compos Part B Eng 97:62–67. https://doi.org/10.1016/j.compositesb.2016.04.053

    Article  CAS  Google Scholar 

  13. Zhang J, Zhang H, Chen F et al (2019) Improving stability of mechanical properties for nitrile butadiene rubber composite by carbon nanotube with antioxidant loading distribution. Polym Compos 40(S2):E1172–E1180. https://doi.org/10.1002/pc.24929

    Article  CAS  Google Scholar 

  14. Nairat M, Talla JA (2019) Electronic properties of aluminum doped carbon nanotubes with stone wales defects: density functional theory. Phys Solid State 61(10):1896–1903. https://doi.org/10.1134/S1063783419100421

    Article  CAS  Google Scholar 

  15. Kumar A, Sharma K, Singh PK et al (2017) Mechanical characterization of vacancy defective single-walled carbon nanotube/epoxy composites. Mater Today Proc 4(2):4013–4021. https://doi.org/10.1016/j.matpr.2017.02.303

    Article  Google Scholar 

  16. Li D, Wang F, Zhang Z et al (2019) The nature of small molecules adsorbed on defective carbon nanotubes. R Soc Open Sci 6(8):190727. https://doi.org/10.1098/rsos.190727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh DK, Iyer PK, Giri PK (2012) Role of molecular interactions and structural defects in the efficient fluorescence quenching by carbon nanotubes. Carbon 50(12):4495–4505. https://doi.org/10.1016/j.carbon.2012.05.030

    Article  CAS  Google Scholar 

  18. Kundalwal SI, Choyal V (2018) Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech 229(6):2571–2584. https://doi.org/10.1007/s00707-018-2123-5

    Article  Google Scholar 

  19. Sakharova NA, Pereira AFG, Antunes JM et al (2016) Numerical simulation study of the elastic properties of single-walled carbon nanotubes containing vacancy defects. Compos Part B Eng 89:155–168. https://doi.org/10.1016/j.compositesb.2015.11.029

    Article  CAS  Google Scholar 

  20. Li Y, Wang Q, Wang S (2019) A review on enhancement of mechanical and tribological properties of polymer composites reinforced by carbon nanotubes and graphene sheet: Molecular dynamics simulations. Compos Part B Eng 160:348–361. https://doi.org/10.1016/j.compositesb.2018.12.026

    Article  CAS  Google Scholar 

  21. Zhang L, Pang J, Zhuang Y et al (2020) Integrated solvent-process design methodology based on COSMO-SAC and quantum mechanics for TMQ (2, 2, 4-trimethyl-1, 2-H-dihydroquinoline) production. Chem Eng Sci 226:115894. https://doi.org/10.1016/j.ces.2020.115894

    Article  CAS  Google Scholar 

  22. Donglei LIU, Haizhen Z, Kun F et al (2021) A study of viscoelastic model of polymers in shear flow based on molecular dynamic simulations. Mater Sci 27(4):431–436. https://doi.org/10.5755/j02.ms.24786

    Article  Google Scholar 

  23. Yang J, Komvopoulos K (2020) A stress analysis method for molecular dynamics systems. Int J Solids Struct 193:98–105. https://doi.org/10.1016/j.ijsolstr.2020.02.003

    Article  CAS  Google Scholar 

  24. Savin AV, Mazo MA (2020) The COMPASS force field: Validation for carbon nanoribbons. Phys E: Low-Dimens Syst Nanostruct 118:113937. https://doi.org/10.1016/j.physe.2019.113937

    Article  CAS  Google Scholar 

  25. Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393. https://doi.org/10.1063/1.439486

    Article  CAS  Google Scholar 

  26. Berendsen HJC, Postma JPM, Van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  27. Luo Y, Wang R, Wang W et al (2017) Molecular dynamics simulation insight into two-component solubility parameters of graphene and thermodynamic compatibility of graphene and styrene butadiene rubber. J Phys Chem C 121(18):10163–10173. https://doi.org/10.1021/acs.jpcc.7b01583

    Article  CAS  Google Scholar 

  28. Zhao X, Niu K, Xu Y et al (2016) Morphology and performance of NR/NBR/ENR ternary rubber composite. Compos Part B Eng 107:106–112. https://doi.org/10.1016/j.compositesb.2016.09.073

    Article  CAS  Google Scholar 

  29. Yang J, Lou W (2022) Molecule dynamics simulation of the effect of oxidative aging on properties of nitrile rubber. Polymers 14(2):226. https://doi.org/10.3390/polym14020226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fu Y, Yang C, Lvov YM et al (2017) Antioxidant sustained release from carbon nanotubes for preparation of highly aging resistant rubber. Chem Eng J 328:536–545. https://doi.org/10.1016/j.cej.2017.06.142

    Article  CAS  Google Scholar 

  31. Zhang H, Zhou Z, Qiu J et al (2021) Defect engineering of carbon nanotubes and its effect on mechanical properties of carbon nanotubes/polymer nanocomposites: A molecular dynamics study. Compos Commun 28:100911. https://doi.org/10.1016/j.coco.2021.100911

    Article  Google Scholar 

  32. Teng F, Wu J, Su B et al (2021) Enhanced tribological properties of vulcanized natural rubber composites by applications of carbon nanotube: a molecular dynamics study. Nanomaterials 11(9):2464. https://doi.org/10.3390/nano11092464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luo Y, Chen X, Liu H et al (2021) Precisely tailoring the thermodynamic compatibility between single-walled carbon nanotubes and styrene butadiene rubber via fully atomistic molecular dynamics simulation and theoretical approach. Comput Mater Sci 186:109995. https://doi.org/10.1016/j.commatsci.2020.109995

    Article  CAS  Google Scholar 

  34. Cui J, Zhao J, Wang S et al (2021) Effects of carbon nanotubes functionalization on mechanical and tribological properties of nitrile rubber nanocomposites: Molecular dynamics simulations. Comput Mater Sci 196:110556. https://doi.org/10.1016/j.commatsci.2021.110556

    Article  CAS  Google Scholar 

  35. Moghadam AD, Omrani E, Menezes PL et al (2015) Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene–a review. Compos Part B Eng 77:402–420. https://doi.org/10.1016/j.compositesb.2015.03.014

    Article  CAS  Google Scholar 

  36. Wang Y, Yang G, Wang W et al (2019) Effects of different functional groups in graphene nanofiber on the mechanical property of polyvinyl alcohol composites by the molecular dynamic simulations. J Mol Liq 277:261–268. https://doi.org/10.1016/j.molliq.2018.12.089

    Article  CAS  Google Scholar 

  37. Eder SJ, Vernes A, Betz G (2013) On the Derjaguin offset in boundary-lubricated nanotribological systems. Langmuir 29(45):13760–13772. https://doi.org/10.1021/la4026443

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Wang S, Wang Q (2017) Enhancement of tribological properties of polymer composites reinforced by functionalized graphene. Compos Part B Eng 120:83–91. https://doi.org/10.1016/j.compositesb.2017.03.063

    Article  CAS  Google Scholar 

  39. Xu Q, Zhang J, Hu YZ et al (2022) Tribological behavior of poly (tetrafluoroethylene) and its composites reinforced by carbon nanotubes and graphene sheets: molecular dynamics simulation. Phys Status Solidi RRL 16(3):2100298. https://doi.org/10.1002/pssr.202100298

    Article  CAS  Google Scholar 

  40. Dhawan M, Dondapati RS, Sharma S (2018) Mechanical characterization of defective single-walled carbon nanotubes reinforced natural rubber composites. 2018 4th International Conference on Computing Sciences (ICCS). IEEE, 209–212.https://doi.org/10.1109/ICCS.2018.00042

  41. Roy A, Gupta KK, Naskar S et al (2021) Compound influence of topological defects and heteroatomic inclusions on the mechanical properties of SWCNTs. Mater Today Commun 26:102021. https://doi.org/10.1016/j.mtcomm.2021.102021

    Article  CAS  Google Scholar 

  42. Li Y, Wang S, Arash B et al (2016) A study on tribology of nitrile-butadiene rubber composites by incorporation of carbon nanotubes: molecular dynamics simulations. Carbon 100:145–150. https://doi.org/10.1016/j.carbon.2015.12.104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant No.51903148) and Guangdong Basic and Applied Basic Research Foundation, China (No. 2021A1515012273)and 2021 Liaoning Province " Goals and Responsibilities " science and technology research projects (NO. 2021JH1/10400097 and 2021JH1/10400084).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and data analysis were performed by Cheng Qian and Yunlong Li. The first draft of the manuscript was written by Cheng Qian and Yunlong Li. Funding acquisition and supervision were done by Jing Zhao and Shijie Wang.

Corresponding author

Correspondence to Yunlong Li.

Ethics declarations

Conflict of interest

The Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Li, Y., Zhao, J. et al. Effect of single-vacancy- and vacancy-adsorbed-atom-defective CNTs on the mechanical and tribological properties of NBR composites: molecular dynamics simulations. J Polym Res 30, 99 (2023). https://doi.org/10.1007/s10965-023-03470-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03470-7

Keywords

Navigation