Skip to main content
Log in

Mechanistic insights into the pyrolysis of poly (vinyl chloride)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The accumulation of unmanaged plastic waste in the environment has a devastating impact upon marine life and human health. Catalytic and thermal pyrolysis are promising technologies toward the efficient utilization of plastic waste. Yet, the processing of polymers, such as polyvinyl chloride (PVC), that decompose into corrosive compounds remains a major challenge. In this work, we employ density functional theory (DFT) and thermogravimetric analysis (TGA) to explore the elementary chemical steps that underpin the thermal decomposition of PVC. We determine that the dehydrochlorination reaction (i.e., 1st stage of thermal decomposition) begins in tertiary chloride defects and propagates via HCl–mediated autocatalysis of internal allylic (IA) chloride groups. The latter groups, when in the vicinity of π–conjugated polymer segments, release HCl in a facile manner. We predict that other compounds, including hydrogen halides and H2O could also catalyze PVC’s dehydrochlorination. We suggest that hydrogen halides are the most efficient catalysts for this process, while other compounds like H2O may slow down the dehydrochlorination compared to purely HCl-catalyzed process, because of the dilution of the produced HCl. This result is corroborated by TGA experiments. Additionally, we study the thermochemistry and kinetics of polyene chain crosslinking and the formation of aromatics. The former reaction proceeds in parallel with the dehydrochlorination process (i.e., during the 1st stage of thermal decomposition), whilst the latter may occur at high temperatures (i.e., during the 2nd stage of thermal decomposition). This work contributes to the fundamental understanding of molecular scale phenomena that take place during PVC pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Borrelle SB, Ringma J, Law KL et al (2020) Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369(80):1515–1518. https://doi.org/10.1126/science.aba3656

    Article  CAS  PubMed  Google Scholar 

  2. Lebreton L, Andrady A (2019) Future scenarios of global plastic waste generation and disposal. Palgrave Commun 5:6. https://doi.org/10.1057/s41599-018-0212-7

    Article  Google Scholar 

  3. Li H, Aguirre-Villegas HA, Allen RD et al (2022) Expanding plastics recycling technologies: chemical aspects, technology status and challenges. Green Chem 24. https://doi.org/10.1039/d2gc02588d

  4. Thiounn T, Smith RC (2020) Advances and approaches for chemical recycling of plastic waste. J Polym Sci 58:1347–1364. https://doi.org/10.1002/pol.20190261

    Article  CAS  Google Scholar 

  5. Chen X, Wang Y, Zhang L (2021) Recent Progress in the Chemical Upcycling of Plastic Wastes. ChemSusChem 14:4137–4151. https://doi.org/10.1002/cssc.202100868

    Article  CAS  PubMed  Google Scholar 

  6. Zhao D, Wang X, Miller JB, Huber GW (2020) The Chemistry and Kinetics of Polyethylene Pyrolysis: A Process to Produce Fuels and Chemicals. Chem Sus Chem 13:1764–1774. https://doi.org/10.1002/cssc.201903434

    Article  CAS  Google Scholar 

  7. Worch JC, Dove AP (2020) 100th Anniversary of Macromolecular Science Viewpoint: Toward Catalytic Chemical Recycling of Waste (and Future) Plastics. ACS Macro Lett 9:1494–1506. https://doi.org/10.1021/acsmacrolett.0c00582

    Article  CAS  PubMed  Google Scholar 

  8. Yu J, Sun L, Ma C et al (2016) Thermal degradation of PVC: A review. Waste Manag 48:300–314. https://doi.org/10.1016/j.wasman.2015.11.041

    Article  CAS  PubMed  Google Scholar 

  9. Butler E, Devlin G, McDonnell K (2011) Waste Polyolefins to Liquid Fuels via Pyrolysis: Review of Commercial State-of-the-Art and Recent Laboratory Research. Waste Biomass Valor 2:227–255. https://doi.org/10.1007/s12649-011-9067-5

    Article  CAS  Google Scholar 

  10. Xue Y, Johnston P, Bai X (2017) Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics. Energy Convers Manag 142:441–451. https://doi.org/10.1016/j.enconman.2017.03.071

    Article  CAS  Google Scholar 

  11. Chen X, Luo Y, Bai X (2021) Upcycling polyamide containing post-consumer Tetra Pak carton packaging to valuable chemicals and recyclable polymer. Waste Manag 131:423–432. https://doi.org/10.1016/j.wasman.2021.06.031

    Article  CAS  PubMed  Google Scholar 

  12. Waste P (2019) Plastic upcycling. Nat Catal 2:945–946. https://doi.org/10.1038/s41929-019-0391-7

    Article  Google Scholar 

  13. Xu Z, Kolapkar SS, Zinchik S et al (2020) Comprehensive kinetic study of thermal degradation of polyvinylchloride (PVC). Polym Degrad Stab 176:109148. https://doi.org/10.1016/j.polymdegradstab.2020.109148

    Article  CAS  Google Scholar 

  14. Zhu HM, Jiang XG, Yan JH et al (2008) TG-FTIR analysis of PVC thermal degradation and HCl removal. J Anal Appl Pyrolysis 82:1–9. https://doi.org/10.1016/j.jaap.2007.11.011

    Article  CAS  Google Scholar 

  15. Braun D (1971) Thermal degradation of polyvinyl chloride. Pure Appl Chem 26:173–192. https://doi.org/10.1351/pac197126020173

    Article  CAS  Google Scholar 

  16. Lopez-Urionabarrenechea A, de Marco I, Caballero BM et al (2012) Catalytic stepwise pyrolysis of packaging plastic waste. J Anal Appl Pyrolysis 96:54–62. https://doi.org/10.1016/j.jaap.2012.03.004

    Article  CAS  Google Scholar 

  17. Dean L, Dafei Z, Deren Z (1988) Mechanism and kinetics of thermo-dehydrochlorination of poly(vinyl chloride). Polym Degrad Stab 22:31–41. https://doi.org/10.1016/0141-3910(88)90054-7

    Article  Google Scholar 

  18. Matsuzawa Y, Ayabe M, Nishino J et al (2004) Evaluation of char fuel ratio in municipal pyrolysis waste. Fuel 83:1675–1687. https://doi.org/10.1016/j.fuel.2004.02.006

    Article  CAS  Google Scholar 

  19. Bittencourt PRS, Scremin FR (2019) Evolved Gas Analysis of PE:PVC Systems Thermodegradation Under Inert and Oxidizing Atmosphere. J Polym Environ 27:612–617. https://doi.org/10.1007/s10924-019-01378-2

    Article  CAS  Google Scholar 

  20. Wootthikanokkhan J, Jaturapiree A, Meeyoo V (2003) Effect of Metal Compounds and Experimental Conditions on Distribution of Products from PVC Pyrolysis. J Polym Environ 11:1–6. https://doi.org/10.1023/A:1023889909704

    Article  CAS  Google Scholar 

  21. Bockhorn H, Hornung A, Hornung U et al (1999) Dehydrochlorination of plastic mixtures. J Anal Appl Pyrolysis 49:97–106. https://doi.org/10.1016/S0165-2370(98)00124-7

    Article  CAS  Google Scholar 

  22. Stromberg RR, Straus S, Achhammer BG (1959) Thermal decomposition of poly(vinyl chloride). J Polym Sci 35:355–368. https://doi.org/10.1002/pol.1959.1203512904

    Article  CAS  Google Scholar 

  23. Wu C-H, Chang C-Y, Hor J-L et al (1994) Two-Stage pyrolysis model of PVC. Can J Chem Eng 72:644–650. https://doi.org/10.1002/cjce.5450720414

    Article  CAS  Google Scholar 

  24. McNeill IC, Memetea L, Cole WJ (1995) A study of the products of PVC thermal degradation. Polym Degrad Stab 49:181–191. https://doi.org/10.1016/0141-3910(95)00064-S

    Article  CAS  Google Scholar 

  25. Fisch MH, Bacaloglu R (1999) Degradation and stabilization of poly(vinyl chloride). 6: Model studies on dehydrochlorination of 6(4)-chloro-4(5)-tetradecenes in the presence of alkyl phosphites and zinc di(dialkyl phosphites). J Vinyl Addit Technol 5:205–217. https://doi.org/10.1002/vnl.10334

    Article  CAS  Google Scholar 

  26. Bacaloglu R, Fisch M (1994) Degradation and stabilization of poly(vinyl chloride). II. Simulation of the poly(vinyl chloride) degradation processes initiated in the polymer backbone. Polym Degrad Stab 45:315–324. https://doi.org/10.1016/0141-3910(94)90201-1

    Article  CAS  Google Scholar 

  27. Starnes WH (2012) Overview and assessment of recent research on the structural defects in poly(vinyl chloride). Polym Degrad Stab 97:1815–1821. https://doi.org/10.1016/j.polymdegradstab.2012.05.037

    Article  CAS  Google Scholar 

  28. Starnes WH (2002) Structural and mechanistic aspects of the thermal degradation of poly(vinyl chloride). Prog Polym Sci 27:2133–2170. https://doi.org/10.1016/S0079-6700(02)00063-1

    Article  CAS  Google Scholar 

  29. Martínez G, Gómez-Elvira JM, Millán J (1993) Influence of tacticity on the thermal degradation of PVC. Part 7—Further approaches to the conformational mechanism through a temperature effect study. Polym Degrad Stab 40:1–8. https://doi.org/10.1016/0141-3910(93)90182-I

    Article  Google Scholar 

  30. Rogestedt M, Hjertberg T (1992) Degradation of poly(vinyl chloride) with increased thermal stability. Macromolecules 25:6332–6340. https://doi.org/10.1021/ma00049a033

    Article  CAS  Google Scholar 

  31. Hjertberg T, SORVIK EM (1984) Degradation and Stabilisation of PVC. Springer, Netherlands, Dordrecht

    Google Scholar 

  32. Purmova J, Pauwels KFD, van Zoelen W et al (2005) New Insight into the Formation of Structural Defects in Poly(Vinyl Chloride). Macromolecules 38:6352–6366. https://doi.org/10.1021/ma050035p

    Article  CAS  Google Scholar 

  33. Hjertberg T, Sörvik EM (1983) Formation of anomalous structures in PVC and their influence on the thermal stability: 3 Internal chloroallylic groups. Polymer (Guildf) 24:685–692. https://doi.org/10.1016/0032-3861(83)90004-6

    Article  CAS  Google Scholar 

  34. Starnes WH, Schilling FC, Abbås KB et al (1979) Mechanism for the Formation of Chloromethyl Branches in Poly(vinyl chloride). Macromolecules 12:556–562. https://doi.org/10.1021/ma60070a004

    Article  CAS  Google Scholar 

  35. Hjertberg T, Sörvik EM (1983) Formation of anomalous structures in PVC and their influence on the thermal stability: 2. Branch structures and tertiary chlorine. Polymer (Guildf) 24:673–684. https://doi.org/10.1016/0032-3861(83)90003-4

    Article  CAS  Google Scholar 

  36. Abbås KB, Bovey FA, Schilling FC (1975) The nature of the branches in poly(vinyl chloride). Die Makromol Chemie 1:227–234. https://doi.org/10.1002/macp.1975.020011975115

    Article  Google Scholar 

  37. Minsker KS, Lisitsky VV, Zaikov GE (1980) Relating chemical structure to poly(vinyl chloride) thermal stability. J Vinyl Addit Technol 2:77–86. https://doi.org/10.1002/vnl.730020204

    Article  CAS  Google Scholar 

  38. Starnes WH, Hartless RL, Schilling FC, Bovey FA (1978) Reductive Dehalogenation with Tri- n -butyltin Hydride: A Powerful New Technique for Use in Poly(vinyl chloride) Microstructure Investigations. In: Stab Degrad Polym pp 324–332

  39. Starnes WH, Chung H, Wojciechowski BJ et al (1996) Auxiliary Mechanism for Transfer to Monomer during Vinyl Chloride Polymerization. In: Adv Chem Series pp 3–18

  40. Troitskii BB, Yakhnov AS, Novikova MA et al (1997) Effect of tacticity on thermal degradation of poly(vinyl chloride). Eur Polym J 33:505–511. https://doi.org/10.1016/S0014-3057(96)00190-5

    Article  CAS  Google Scholar 

  41. Xie TY, Hamielec AE, Rogestedt M, Hjertberg T (1994) Experimental investigation of vinyl chloride polymerization at high conversion: polymer microstructure and thermal stability and their relationship to polymerization conditions. Polymer (Guildf) 35:1526–1534. https://doi.org/10.1016/0032-3861(94)90354-9

    Article  CAS  Google Scholar 

  42. Van Cauter K, Van Den Bossche BJ, Van Speybroeck V, Waroquier M (2007) Ab Initio Study of Free-Radical Polymerization: Defect Structures in Poly(vinyl chloride). Macromolecules 40:1321–1331. https://doi.org/10.1021/ma062174s

    Article  CAS  Google Scholar 

  43. Karayıldırım T, Yanık J, Yüksel M et al (2005) Degradation of PVC Containing Mixtures in the Presence of HCl Fixators. J Polym Environ 13:365–374. https://doi.org/10.1007/s10924-005-5531-2

    Article  CAS  Google Scholar 

  44. Braun D, Bender RF (1969) On the mechanism of thermal dehydrochlorination of poly (vinyl chloride)—6. Eur Polym J 5:269–283. https://doi.org/10.1016/S0014-3057(69)80017-0

    Article  Google Scholar 

  45. Troitskii BB, Troitskaya LS (1999) Degenerated branching of chain in poly(vinyl chloride) thermal degradation. Eur Polym J 35:2215–2224. https://doi.org/10.1016/S0014-3057(99)00002-6

    Article  CAS  Google Scholar 

  46. Rasuvaev GA, Troitskaya LS, Troitskii BB (1971) Mechanism of action of some stabilizers in the thermal degradation of poly(vinyl chloride). J Polym Sci Part A-1 Polym Chem 9:2673–2688. https://doi.org/10.1002/pol.1971.150090921

  47. Yanborisov VM, Borisevich SS (2005) Quantum-chemical modeling of the mechanism of autocatalytic dehydrochlorination of PVC. Theor Exp Chem 41:352–358. https://doi.org/10.1007/s11237-006-0002-y

    Article  CAS  Google Scholar 

  48. Starnes WH, Ge X (2004) Mechanism of Autocatalysis in the Thermal Dehydrochlorination of Poly(vinyl chloride). Macromolecules 37:352–359. https://doi.org/10.1021/ma0352835

    Article  CAS  Google Scholar 

  49. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian Inc., Wallingford CT

  50. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  51. Zhao Y, Truhlar DG (2008) Density Functionals with Broad Applicability in Chemistry. Acc Chem Res 41:157–167. https://doi.org/10.1021/ar700111a

    Article  CAS  PubMed  Google Scholar 

  52. Chuchani G, Hernandeza JA, Martin I (1979) Neighboring olefinic double-bond participation in gas phase pyrolysis of some alkenyl chlorides. Int J Chem Kinet 11:1279–1286. https://doi.org/10.1002/kin.550111207

    Article  CAS  Google Scholar 

  53. Liu S, Srinivasan S, Tao J et al (2014) Modeling spin-forbidden monomer self-initiation reactions in spontaneous free-radical polymerization of acrylates and methacrylates. J Phys Chem A 118:9310–9318. https://doi.org/10.1021/jp503794j

    Article  CAS  PubMed  Google Scholar 

  54. Liu S, Srinivasan S, Grady MC et al (2014) Backbiting and β-scission reactions in free-radical polymerization of methyl acrylate. Int J Quantum Chem 114:345–360. https://doi.org/10.1002/qua.24572

    Article  CAS  Google Scholar 

  55. Ditchfield R, Hehre WJ, Pople JA (1971) Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J Chem Phys 54:724–728. https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  56. Lynch BJ, Truhlar DG (2003) Robust and affordable multicoefficient methods for thermochemistry and thermochemical kinetics: The MCCM/3 suite and SAC/3. J Phys Chem A 107:3898–3906. https://doi.org/10.1021/jp0221993

    Article  CAS  Google Scholar 

  57. Van Cauter K, Van Speybroeck V, Waroquier M (2007) Ab Initio Study of Poly(vinyl chloride) Propagation Kinetics: Head-to-Head versus Head-to-Tail Additions. ChemPhysChem 8:541–552. https://doi.org/10.1002/cphc.200600659

    Article  CAS  PubMed  Google Scholar 

  58. Huang J, Li X, Zeng G et al (2018) Thermal decomposition mechanisms of poly(vinyl chloride): A computational study. Waste Manag 76:483–496. https://doi.org/10.1016/j.wasman.2018.03.033

    Article  CAS  PubMed  Google Scholar 

  59. Izgorodina EI, Coote ML (2006) Accurate ab initio prediction of propagation rate coefficients in free-radical polymerization: Acrylonitrile and vinyl chloride. Chem Phys 324:96–110. https://doi.org/10.1016/j.chemphys.2005.09.042

    Article  CAS  Google Scholar 

  60. Eyring H (1935) The Activated Complex in Chemical Reactions. J Chem Phys 3:107–115. https://doi.org/10.1063/1.1749604

    Article  CAS  Google Scholar 

  61. Wypych G (2020) Chemical Structure of PVC. In: PVC Degradation and Stabilization. pp 1–23

  62. Rogestedt M, Hjertberg T (1993) Structure and Degradation of Commercial Poly(vinyl chloride) Obtained at Different Temperatures. Macromolecules 26:60–64. https://doi.org/10.1021/ma00053a009

    Article  CAS  Google Scholar 

  63. Maccoll A (1968) Heterolysis and the Pyrolysis of Alkyl Halides in the Gas Phase. Chem Rev 69:33–60. https://doi.org/10.1021/cr60257a002

  64. Lu T, Chen F (2012) Multiwfn : A Multifunctional Wavefunction Analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  65. Krongauz VV, Lee YP, Bourassa A (2011) Kinetics of thermal degradation of poly(vinyl chloride): Thermogravimetry and spectroscopy. J Therm Anal Calorim 106:139–149. https://doi.org/10.1007/s10973-011-1703-6

    Article  CAS  Google Scholar 

  66. Liu H, Wang C, Zhang J et al (2020). Pyrolysis Kinetics and Thermodynamics of Typical Plastic Waste. https://doi.org/10.1021/acs.energyfuels.9b04152

    Article  Google Scholar 

  67. Ye L, Li T, Hong L (2021) Understanding enhanced char formation in the thermal decomposition of PVC resin : Role of intermolecular chlorine loss. Mater Today Commun 26:102186. https://doi.org/10.1016/j.mtcomm.2021.102186

  68. Suzuki M, Tsuge S, Takeuchi T (1972) Study of the effect of stabilizer on the degradation of poly(vinyl chloride) by pyrolysis–gas chromatography. J Polym Sci Part A-1 Polym Chem 10:1051–1060. https://doi.org/10.1002/pol.1972.150100409

  69. Lattimer RP, Kroenke WJ (1982) Mechanisms of formation of volatile aromatic pyrolyzates from poly(vinyl chloride). J Appl Polym Sci 27:1355–1366. https://doi.org/10.1002/app.1982.070270425

    Article  CAS  Google Scholar 

  70. Davis HG (1983) Rate of formation of toluene from ethylbenzene. Int J Chem Kinet 15:469–474. https://doi.org/10.1002/kin.550150507

    Article  CAS  Google Scholar 

  71. Nakamura K, Okuda A, Ohta K et al (2018) Direct Methylation of Benzene with Methane Catalyzed by Co/MFI Zeolite. ChemCatChem 10:3806–3812. https://doi.org/10.1002/cctc.201800724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mebel AM, Landera A, Kaiser RI (2017) Formation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames. J Phys Chem A 121:901–926. https://doi.org/10.1021/acs.jpca.6b09735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office under Award Number DEEE0009285. We used resources at the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE–AC02–05CH11231, using NERSC award BES-ERCAP0019973. We are also grateful for the computing resources and assistance of the UW–Madison Center by the High Throughput Computing (CHTC) in the Department of Computer Sciences. The CHTC is supported by UW–Madison, the Advanced Computing Initiative, the Wisconsin Alumni Research Foundation, the Wisconsin Institutes for Discovery, and the National Science Foundation, and is an active member of the OSG Consortium, which is supported by the National Science Foundation and the U.S. Department of Energy's Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manos Mavrikakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5108 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papanikolaou, K.G., Wu, J., Huber, G.W. et al. Mechanistic insights into the pyrolysis of poly (vinyl chloride). J Polym Res 30, 83 (2023). https://doi.org/10.1007/s10965-023-03439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03439-6

Keywords

Navigation