Skip to main content
Log in

Long-side chains functionalized cross-linked sulfonated poly (ether ketone sulfone)s as proton exchange membranes

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, sulfonated poly (ether ketone sulfone)s polymers with long sulfonic acid alkyl side chains and amino groups were prepared by free radical and polycondensation reaction. Poly (ether ketone)s with carboxyl groups were used for macromolecule crosslinking agent to prepare cross-linked membranes by amidation reaction. This series of membranes were characterized by FT-IR and 1H NMR. Meanwhile, cross-linked composite membranes possessed excellent mechanical properties, methanol resistance performance and thermal stability. The highest proton conductivity of 0.096 S cm−1 was observed for APD-3/CP at 80 °C. The range of methanol permeation coefficients for the prepared membranes (2.89 × 10−7cm2s−1—4.95 × 10−7cm2s−1) was far lower as compared to that of Nafion 117 (24.1 × 10−7cm2s−1). The results of morphology, swelling ratio and proton conductivity showed that the hydrophilic-hydrophobic phase separation structure effectively improved the properties of the membrane namely water uptake, dimensional stability and proton conductivity. Long-side chains functionalized cross-linked sulfonated poly (ether ketone sulfone)s proton exchange membranes had good candidate for application in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu D, Dong B, Zhang HB, Xie YJ, Pang JH, Jiang ZH (2021) High methanol resistant polyelectrolyte membrane based on semi-crystalline poly(ether ketone) with densely sulfonated side chain for direct methanol fuel cell. J Power Sources 482:228982

    Article  CAS  Google Scholar 

  2. Wang YC, Chu FL, Zeng J, Wang QJ, Naren TY, Li YY, Cheng Y, Lei YP, Wu FX (2021) Single atom catalysts for fuel cells and rechargeable batteries: Principles, advances, and opportunities. ACS Nano 15:210–239

    Article  CAS  PubMed  Google Scholar 

  3. Ju MC, Shi QY, Xu JM, Chen X, Ren JH, Lei JX, Meng LX, Zhao PY, Wang Z (2022) Construction of effective transmission channels by anchoring metal-organic framework on side-chain sulfonated poly(arylene ether ketone sulfone) for fuel cells. Int J Energ Res 46:11123–11138

    Article  CAS  Google Scholar 

  4. Chen X, Shi QY, Xu JM, Ju MC, Ren JH, Zhao PY, Meng LX, Lei JX, Wang Z (2022) Enhanced proton conductivity of poly (arylene ether ketone sulfone) containing uneven sulfonic acid side chains by incorporating imidazole functionalized metal-organic framework. Int J Hydrogen Energy 47:7443–7457

    Article  CAS  Google Scholar 

  5. Sood R, Giancola S, Donnadio A, Zaton M, Donzel N, Roziere J, Jones DJ, Cavaliere S (2021) Active electrospun nanofibers as an effective reinforcement for highly conducting and durable proton exchange membranes. J Membrane Sci 622:119037

    Article  CAS  Google Scholar 

  6. Ranganathan H, Vinothkannan M, Kim AR, Subramanian V, Oh MS, Yoo DJ (2022) Simultaneous improvement of power density and durability of sulfonated poly(ether ether ketone) membrane by embedding CeO2-ATiO2: a comprehensive study in low humidity proton exchange membrane fuel cells. Int J Energ Res 46:9041–9057

    Article  CAS  Google Scholar 

  7. Hooshyari K, Karimi MB, Su HN, Rahmani S, Rajabi HR (2022) Nanocomposite proton exchange membranes based on sulfonated polyethersulfone and functionalized quantum dots for fuel cell application. Int J Energ Res 46:9178–9193

    Article  CAS  Google Scholar 

  8. Devrim Y, Durmus GNB (2022) Composite membrane by incorporating sulfonated graphene oxide in polybenzimidazole for high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 47:9004–9017

    Article  CAS  Google Scholar 

  9. Duan YT, Ru CY, Li JL, Sun YN, Pu XT, Liu BH, Pang BH, Zhao CJ (2022) Enhancing proton conductivity and methanol resistance of SPAEK membrane by incorporating MOF with flexible alkyl sulfonic acid for DMFC. J Membrane Sci 641:119906

    Article  CAS  Google Scholar 

  10. Zhang L, Jiang YH, Wang HX, Qian PH, Sheng JX, Shi HF (2022) Sulfonated poly (ether ketone)/sulfonated titanium dioxide hybrid membrane with high selectivity and good stability for vanadium redox flow battery. J Energy Storage 45:103705

    Article  Google Scholar 

  11. Yang X, Kim JH, Kim YJ (2022) Enhanced proton conductivity of poly (ether sulfone) multi-block copolymers grafted with densely pendant sulfoalkoxyl side chains for proton exchange membranes. Polymer 242:124604

    Article  CAS  Google Scholar 

  12. Kim J, Han JS, Kim H, Kim K, Lee H, Kim E, Choi W, Lee JC (2022) Thermally cross-linked sulfonated poly(ether ether ketone) membranes containing a basic polymer-grafted graphene oxide for vanadium redox flow battery application. J Energy Storage 45:103784

    Article  Google Scholar 

  13. Kang HH, Lee DH (2021) Improving the durability and performance of sulfonated poly(arylene ether)s by introducing 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide structure for fuel cell application. ACS Omega 6:35315–35324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lou XC, Lu B, He MR, Yu YS, Zhu XB, Peng F, Qin CP, Ding M, Jia CK (2022) Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery. J Membrane Sci 643:120015

    Article  CAS  Google Scholar 

  15. Kim J, Ohira A (2021) Crosslinked sulfonated polyphenylsulfone (CSPPSU) membranes for elevated-temperature PEM water electrolysis. Membranes 11:816

    Article  CAS  Google Scholar 

  16. Khan MI, Shanableh A, Shahida S, Lashari MH, Manzoor S, Fernandez J (2022) SPEEK and SPPO blended membranes for proton exchange membrane fuel cells. Membranes 12:263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jin KY, Yue BH, Yan LM, Qiao RS, Zhao HB, Zhang JJ (2022) Synthesis and characterization of poly(5’-hexyloxy-1’,4-biphenyl)-b-poly(2’,4’-bispropoxysulfonate-1’,4-bi phenyl) with high ion exchange capacity for proton exchange membrane fuel cell applications. Chem-Asian J 17:e202200109

    Article  CAS  PubMed  Google Scholar 

  18. Xu JQ, Lin QL, Yu Y, Chen DY, Ye ZL (2017) Facile synthesis of fluorinated poly(arylene ether)s with pendant sulfonic acid groups for proton exchange membranes. Int J Hydrogen Energy 42:27100–27110

    Article  CAS  Google Scholar 

  19. Chowdury MSK, Cho YJ, Park SB, Park YI (2021) Enhanced proton conductivity of (3-mercaptopropyl) trimethoxysilane-grafted graphene oxide membranes for hydrogen fuel cells. J Electrochem Soc 168:124502

    Article  CAS  Google Scholar 

  20. Xu JM, Cheng HL, Ma L, Han HL, Wang Z (2013) Construction of a new continuous proton transport channel through a covalent crosslinking reaction between carboxyl and amino groups. Int J Hydrogen Energy 38:10092–10103

    Article  CAS  Google Scholar 

  21. Dai JM, Zhang Y, Wang G, Zhuang YB (2022) Structural architectures of polymer proton exchange membranes suitable for high-temperature fuel cell applications. Sci China-Mater 65:273–297

    Article  CAS  Google Scholar 

  22. Qian PH, Wang HX, Zhang L, Zhou Y, Shi HF (2022) An enhanced stability and efficiency of speek-based composite membrane influenced by amphoteric side-chain polymer for vanadium redox flow battery. J Membrane Sci 643:120011

    Article  CAS  Google Scholar 

  23. Zhang X, Li ZW, Chen XL, Chen DY, Zheng YY (2020) Side chain engineering of sulfonated poly(arylene ether)s for proton exchange membranes. Chin J Polym Sci 38:644–652

    Article  CAS  Google Scholar 

  24. Kim M, Ko HS, Nam SY, Kim K (2021) Study on control of polymeric architecture of sulfonated hydrocarbon-based polymers for high-performance polymer electrolyte membranes in fuel cell applications. Polymers 13:3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li JL, Tian XZ, Xia CL, Duan YT, Sun YN, Liu BH, Wu LM, Ru CY, Zhang ST, Zhao CJ (2021) Construction of proton transport highways induced by polarity-driving in proton exchange membranes to enhance the performance of fuel cells. ACS Appl Mater Interfaces 13:40673–40684

    Article  PubMed  Google Scholar 

  26. Feng SN, Wang GB, Zhang HB, Pang JH (2015) Graft octa-sulfonated poly(arylene ether) for high performance proton exchange membrane. J Mater Chem A 3:12698–12708

    Article  CAS  Google Scholar 

  27. Ahn SM, Kim TH, Yuk J, Jeong HY, Yu DM, Hong SK, Hong YT, Lee JC, Kim TH (2022) Perfluorocyclobutyl-containing multiblock copolymers to induce enhanced hydrophilic/hydrophobic phase separation and high proton conductivity at low humidity. J Membrane Sci 641:119892

    Article  CAS  Google Scholar 

  28. Liu L, Wang C, He ZF, Liu H, Hu Q, Naik N, Guo ZH (2021) Bi-functional side chain architecture tuned amphoteric ion exchange membranes for high-performance vanadium redox flow batteries. J Membrane Sci 624:119118

    Article  CAS  Google Scholar 

  29. Pan T, Yue BH, Yan LM, Zeng GB, Hu YD, He SF, Lu W, Zhao HB, Zhang JJ (2020) N, N-bis(sulfopropyl)aminyl-4-phenyl polysulfone and O, O ’-bis(sulfopropyl)resorcinol-5-yl-4-phenyl polysulfone composite membrane for proton exchange membrane fuel cells. Int J Hydrogen Energy 45:23490–23503

    Article  CAS  Google Scholar 

  30. Zeng GB, Zhang DQ, Yan LM, Yue BH, Pan T, Hu YD, He SF, Zhao HB, Zhang JJ (2021) Design and synthesis of side-chain optimized poly(2,6-dimethyl-1,4-phenylene oxide)-g-poly(styrene sulfonic acid) as proton exchange membrane for fuel cell applications: balancing the water-resistance and the sulfonation degree. Int J Hydrogen Energy 46:20664–20677

    Article  CAS  Google Scholar 

  31. Li GB, Zhao CJ, Li XF, Qi D, Liu C, Bu FZ, Na H (2015) Novel side-chain-type sulfonated diphenyl-based poly(arylene ether sulfone)s with a hydrogen-bonded network as proton exchange membranes. Polym Chem 6:5911–5920

    Article  CAS  Google Scholar 

  32. Ban T, Guo ML, Wang YJ, Wang YN, Zhang YY, Zhang JS, Zhu XL (2021) Densely functionalized proton exchange membrane from sulfonated poly (aryl ether ketone) containing multiple flexible side chains for fuel cell. Solid State Ion 372:115777

    Article  CAS  Google Scholar 

  33. Pang JH, Zhang HB, Li XF, Ren DF, Jiang ZH (2007) Low water swelling and high proton conducting sulfonated poly(arylene ether) with pendant sulfoalkyl groups for proton exchange membranes. Macromol Rapid Comm 28:2332–2338

    Article  CAS  Google Scholar 

  34. Ren JH, Xu JM, Ju MC, Chen X, Zhao PY, Meng LX, Lei JX, Wang Z (2022) Long-term durable anion exchange membranes based on imidazole-functionalized poly(ether ether ketone) incorporating cationic metal−organic framework. Adv Powder Mater 1:100017

    Article  Google Scholar 

  35. Li WH, Jiang JJ, An HL, Dong S, Yue ZY, Qian HD, Yang H (2021) Self-cross-linked sulfonated poly(ether ether ketone) with pendant sulfoalkoxy groups for proton exchange membrane fuel cells. ACS Appl Energ Mater 4:2732–2740

    Article  CAS  Google Scholar 

  36. Li XY, Zhang ZX, Xie Z, Guo XR, Yang TJ, Li ZL, Tu M, Rao HX (2022) High performance and self-humidifying of C proton exchange membranes based on sulfonated polysulfone. Nanomaterials 12:841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu JM, Wang Z, Zhang HX, Ni HZ, Luo XY, Liu BX (2016) Direct polymerization of novel functional sulfonated poly(arylene ether ketone sulfone)/sulfonated poly(vinyl alcohol) with high selectivity for fuel cells. RSC Adv 6:27725–27737

    Article  CAS  Google Scholar 

  38. Zhang ZG, Ren JH, Ju MC, Chen X, Xu JM, Wang Z, Meng LX, Zhao PY, Wang H (2021) Construction of new alternative transmission sites by incorporating structure-defect metal-organic framework into sulfonated poly(arylene ether ketone sulfone)s. Int J Hydrogen Energy 46:27193–27206

    Article  CAS  Google Scholar 

  39. Yu WS, Zhang JJ, Liang X, Ge XL, Wei CP, Ge ZJ, Zhang KY, Li G, Song WJ, Shehzad MA, Wu L, Xu TW (2021) Anion exchange membranes with fast ion transport channels driven by cation-dipole interactions for alkaline fuel cells. J Membrane Sci 634:119404

    Article  CAS  Google Scholar 

  40. Wang J, Dai Y, Xu SC, Jiang HX, He RH (2021) Simultaneously enhancing proton conductivity and mechanical stability of the membrane electrolytes by crosslinking of poly(aromatic ether sulfone) with octa-amino polyhedral oligomeric silsesquioxane. J Power Sources 506:230217

    Article  CAS  Google Scholar 

  41. Vijayakumar V, Khastgir D (2018) Hybrid composite membranes of chitosan/sulfonated polyaniline/silica as polymer electrolyte membrane for fuel cells. Carbohydr Polym 179:152–163

    Article  CAS  PubMed  Google Scholar 

  42. Yan XM, Dong ZW, Di MT, Hu L, Zhang CM, Pan Y, Zhang N, Jiang XB, Wu XM, Wang JY, He GH (2020) A highly proton-conductive and vanadium-rejected long-side-chain sulfonated polybenzimidazole membrane for redox flow battery. J Membrane Sci 596:117616

    Article  CAS  Google Scholar 

  43. Wang JH, Chen J, Xu ZY, Yang XZ, Ramakrishna S, Liu Y (2022) Mesoscale hydrated morphology of perfluorosulfonic acid membranes. J Appl Polym Sci 139:52275

    Article  CAS  Google Scholar 

  44. Huang HH, Yao Q, Zhang XP, Wang HJ (2022) Microporous expanded polytetrafluoroethylene layer functionalized hydrophilic groups for excellent mechanical durability and superior performance in proton exchange membrane fuel cell. J Power Sources 526:231130

    Article  CAS  Google Scholar 

  45. Xiao YM, Ma QX, Shen XY, Wang SB, Xiang J, Zhang L, Cheng PG, Du XJ, Yin Z, Tang N (2022) Facile preparation of polybenzimidazole membrane crosslinked with three-dimensional polyaniline for high-temperature proton exchange membrane. J Power Sources 528:231218

    Article  CAS  Google Scholar 

  46. Nguyen MDT, Yang S, Kim D (2016) Pendant dual sulfonated poly(arylene ether ketone) proton exchange membranes for fuel cell application. J Power Sources 328:355–363

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from National Natural Science Foundation of China (grant no. 51803011), Education Department of Jilin Province (grant no. JJKH20200666KJ) and Department of Science and Technology of Jilin Province ((Jilin Province Natural Science Foundation) grant no. 20210101071JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingmei Xu or Zhe Wang.

Ethics declarations

Conflicts of interest

All the authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Meng, L., Shi, Q. et al. Long-side chains functionalized cross-linked sulfonated poly (ether ketone sulfone)s as proton exchange membranes. J Polym Res 29, 482 (2022). https://doi.org/10.1007/s10965-022-03334-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03334-6

Keywords

Navigation