Skip to main content
Log in

Comparative studies of structural, thermal, mechanical, rheological and dynamic mechanical response of melt mixed PHB/bio-PBS and PHBV/bio-PBS blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

PHB/bio-PBS and PHBV/bio-PBS blends have been comparatively evaluated for their thermo-mechanical, morphological and rheological properties. Differential scanning calorimetry indicated crystallisation of PHB and PHBV to be largely restricted, whereas the thermal stability of PHB and PHBV blends marginally increased upon blending with bio-PBS. The immiscibility of the two components of two blends influenced the morphological changes from domain-dispersed to co-continuous type where the domain sizes of the dispersed phase bio-PBS increased in tune with compositions. Dynamic mechanical analysis showed distinct glass transition relaxation peaks of two components whereas WAXD studies confirmed a sharper decline in crystallisation of the PHB/bio-PBS based blends than in PHBV/bio-PBS systems, though the lamellar sizes estimated from Scherrer’s equation. At higher frequencies, the non-Newtonian melt flow dynamics of blends showed a sharp drop in their complex viscosity attributed to alignment of droplets along the flow direction (shear) due to phase separated morphology. Constitutive modelling of complex viscosity indicate the polymer melts to follow Carreau-Yasuda model, where the zero-shear viscosity decreased with bio-PBS content, irrespective of the nature of the matrix. Application of Cox-Merz rule has lead to estimations that PHB and PHBV matrices could give rise to co-continuous morphologies at a 35 wt. % and 41 wt. % of bio-PBS contents respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Gigli M, Fabbri M, Lotti N, Gamberini R, Rimini B, Munari A (2016) Poly(butylene succinate)-based polyesters for biomedical applications: A review. Eur Polymer J 75:431–460

    Article  CAS  Google Scholar 

  2. Ha C-S, Cho W-J (2002) Miscibility, properties, and biodegradability of microbial polyester containing blends. Prog Polym Sci 27:759–809

    Article  CAS  Google Scholar 

  3. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    Article  CAS  Google Scholar 

  4. Winnacker M (2019) Polyhydroxyalkanoates: Recent Advances in Their Synthesis and Applications. Eur J Lipid Sci Technol 121:1900101

    Article  CAS  Google Scholar 

  5. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  CAS  Google Scholar 

  6. Di Lorenzo ML (2021) Poly(l-Lactic Acid)/Poly(Butylene Succinate) Biobased Biodegradable Blends. Polym Rev 61:457–492

    Article  Google Scholar 

  7. Ma P, Cai X, Wang W, Duan F, Shi D, Lemstra PJ (2014) Crystallization behavior of partially crosslinked poly(β-hydroxyalkonates)/poly(butylene succinate) blends. J Appl Polym Sci 131:41020

    Article  Google Scholar 

  8. Zhang K, Mohanty AK, Misra M (2012) Fully Biodegradable and Biorenewable Ternary Blends from Polylactide, Poly(3-hydroxybutyrate-co-hydroxyvalerate) and Poly(butylene succinate) with Balanced Properties. ACS Appl Mater Interfaces 4:3091–3101

    Article  CAS  Google Scholar 

  9. Wu F, Misra M, Mohanty AK (2019) Super Toughened Poly(lactic acid)-Based Ternary Blends via Enhancing Interfacial Compatibility. ACS Omega 4:1955–1968

    Article  CAS  Google Scholar 

  10. Zembouai I, Bruzaud S, Kaci M, Benhamida A, Corre Y-M, Grohens Y, Taguet A, Lopez-Cuesta J-M (2014) Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Polylactide Blends: Thermal Stability, Flammability and Thermo-Mechanical Behavior. J Polym Environ 22:131–139

    Article  CAS  Google Scholar 

  11. Qiu Z, Ikehara T, Nishi T (2003) Poly(hydroxybutyrate)/poly(butylene succinate) blends: miscibility and nonisothermal crystallization. Polymer 44:2503–2508

    Article  CAS  Google Scholar 

  12. Qiu Z, Ikehara T, Nishi T (2003) Miscibility and crystallization behaviour of biodegradable blends of two aliphatic polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) blends. Polymer 44:7519–7527

    Article  CAS  Google Scholar 

  13. Zytner P, Wu F, Misra M, Mohanty AK (2020) Toughening of Biodegradable Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(ε-caprolactone) Blends by In Situ Reactive Compatibilization. ACS Omega 5:14900–14910

    Article  CAS  Google Scholar 

  14. Chun YS, Kim WN (2000) Thermal properties of poly(hydroxybutyrate-co-hydroxyvalerate) and poly(ϵ-caprolactone) blends. Polymer 41:2305–2308

    Article  CAS  Google Scholar 

  15. Qiu Z, Komura M, Ikehara T, Nishi T (2003) Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(butylene succinate) and Poly(ε-caprolactone). Polymer 44:7749–7756

    Article  CAS  Google Scholar 

  16. Blümm E, Owen AJ (1995) Miscibility, crystallization and melting of poly(3-hydroxybutyrate)/ poly(l-lactide) blends. Polymer 36:4077–4081

    Article  Google Scholar 

  17. Wang X, Chen Z, Chen X, Pan J, Xu K (2010) Miscibility, crystallization kinetics, and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate)(P3/4HB) blends. J Appl Polym Sci 117:838–848

    Article  CAS  Google Scholar 

  18. Zhu W, Wang X, Chen X, Xu K (2009) Miscibility, crystallization, and mechanical properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/ poly(butylene succinate) blends. J Appl Polym Sci 114:3923–3931

    Article  CAS  Google Scholar 

  19. Zembouai I, Kaci M, Bruzaud S, Benhamida A, Corre Y-M, Grohens Y (2013) A study of morphological, thermal, rheological and barrier properties of Poly(3-hydroxybutyrate-Co-3-Hydroxyvalerate)/polylactide blends prepared by melt mixing. Polym Test 32:842–851

    Article  CAS  Google Scholar 

  20. Liu Q, Wu C, Zhang H, Deng B (2015) Blends of polylactide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low content of hydroxyvalerate unit: Morphology, structure, and property. J Appl Polym Sci 132:42689

    Article  Google Scholar 

  21. Gerard T, Budtova T (2012) Morphology and molten-state rheology of polylactide and polyhydroxyalkanoate blends. Eur Polymer J 48:1110–1117

    Article  CAS  Google Scholar 

  22. Phua YJ, Pegoretti A, Araujo TM, Ishak ZAM (2015) Mechanical and thermal properties of poly(butylene succinate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biodegradable blends. J Appl Polym Sci 132:42815

    Article  Google Scholar 

  23. Qiu TY, Song M, Zhao LG (2016) Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends. Mech Adv Mater Mod Process 2:7

    Article  Google Scholar 

  24. Kassos N, Kelly AL, Gough T, Gill AA (2018) Synergistic toughening and compatibilisation effect of poly(butylene succinate) in PLA/poly-caprolactone blends. Mater Res Express 6:035313

    Article  Google Scholar 

  25. Garcia-Garcia D, Ferri JM, Boronat T, Lopez-Martinez J, Balart R (2016) Processing and characterization of binary poly(hydroxybutyrate) (PHB) and poly(caprolactone) (PCL) blends with improved impact properties. Polym Bull 73:3333–3350

    Article  CAS  Google Scholar 

  26. Kumar V, Sehgal R, Gupta R (2021) Blends and composites of polyhydroxyalkanoates (PHAs) and their applications. Eur Polymer J 161:110824

    Article  CAS  Google Scholar 

  27. Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: Diversification and biomedical applications: A state of the art review. Mater Sci Eng C 32:637–647

    Article  CAS  Google Scholar 

  28. Raza ZA, Khalil S, Abid S (2020) Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. Int J Biol Macromol 160:77–100

    Article  CAS  Google Scholar 

  29. Rivera-Briso AL, Serrano-Aroca Á (2018) Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers 10:732

    Article  Google Scholar 

  30. Mehrpouya M, Vahabi H, Barletta M, Laheurte P, Langlois V (2021) Additive manufacturing of polyhydroxyalkanoates (PHAs) biopolymers: Materials, printing techniques, and applications. Mater Sci Eng C 127:112216

    Article  CAS  Google Scholar 

  31. Lim J, You M, Li J, Li Z (2017) Emerging bone tissue engineering via Polyhydroxyalkanoate (PHA)-based scaffolds. Mater Sci Eng C 79:917–929

    Article  CAS  Google Scholar 

  32. Ma P, Hristova-Bogaerds DG, Zhang Y, Lemstra PJ (2014) Enhancement in crystallization kinetics of the bacterially synthesized poly(β-hydroxybutyrate) by poly(butylene succinate). Polym Bull 71:907–923

    Article  CAS  Google Scholar 

  33. Ma P, Hristova-Bogaerds DG, Lemstra PJ, Zhang Y, Wang S (2012) Toughening of PHBV/PBS and PHB/PBS Blends via In situ Compatibilization Using Dicumyl Peroxide as a Free-Radical Grafting Initiator. Macromol Mater Eng 297:402–410

    Article  CAS  Google Scholar 

  34. Barham PJ, Keller A, Otun EL, Holmes PA (1984) Crystallization and morphology of a bacterial thermoplastic: poly-3-hydroxybutyrate. J Mater Sci 19:2781–2794

    Article  CAS  Google Scholar 

  35. Jost V, Schwarz M, Langowski H-C (2017) Investigation of the 3-hydroxyvalerate content and degree of crystallinity of P3HB-co-3HV cast films using Raman spectroscopy. Polymer 133:160–170

    Article  CAS  Google Scholar 

  36. Miyata T, Masuko T (1998) Crystallization behaviour of poly(tetramethylene succinate). Polymer 39:1399–1404

    Article  CAS  Google Scholar 

  37. Kumar S, Satapathy BK, Maiti SN (2013) Correlation of morphological parameters and mechanical performance of polyamide-612/poly (ethylene–octene) elastomer blends. Polym Adv Technol 24:511–519

    Article  CAS  Google Scholar 

  38. Jost V, Miesbauer O (2018) Effect of different biopolymers and polymers on the mechanical and permeation properties of extruded PHBV cast films. J Appl Polym Sci 135:46153

    Article  Google Scholar 

  39. Gan Z, Abe H, Kurokawa H, Doi Y (2001) Solid-State Microstructures, Thermal Properties, and Crystallization of Biodegradable Poly(butylene succinate) (PBS) and Its Copolyesters. Biomacromol 2:605–613

    Article  CAS  Google Scholar 

  40. Yoo ES, Im SS (1999) Melting behavior of poly(butylene succinate) during heating scan by DSC. J Polym Sci B Polym Phys 37:1357–1366

    Article  CAS  Google Scholar 

  41. Ahn BD, Kim SH, Kim YH, Yang JS (2001) Synthesis and characterization of the biodegradable copolymers from succinic acid and adipic acid with 1,4-butanediol. J Appl Polym Sci 82:2808–2826

    Article  CAS  Google Scholar 

  42. S̆krbić Z, Divjaković V (1996) Temperature influence on changes of parameters of the unit cell of biopolymer PHB. Polymer 37:505–507

    Article  Google Scholar 

  43. Bluhm TL, Hamer GK, Marchessault RH, Fyfe CA, Veregin RP (1986) Isodimorphism in bacterial poly(β-hydroxybutyrate-co-β-hydroxyvalerate). Macromolecules 19:2871–2876

    Article  CAS  Google Scholar 

  44. Galego N, Rozsa C, Sánchez R, Fung J, Analı́a V, Santo Tomás J (2000) Characterization and application of poly(β-hydroxyalkanoates) family as composite biomaterials. Polym Test 19:485–492

    Article  CAS  Google Scholar 

  45. Konwar DB, Jacob J, Satapathy BK (2016) A comparative study of poly(l-lactide)-block-poly(ϵ-caprolactone) six-armed star diblock copolymers and polylactide/poly(ϵ-caprolactone) blends. Polym Int 65:1107–1117

    Article  CAS  Google Scholar 

  46. Bayarı S, Severcan F (2005) FTIR study of biodegradable biopolymers: P(3HB), P(3HB-co-4HB) and P(3HB-co-3HV). J Mol Struct 744–747:529–534

    Article  Google Scholar 

  47. Cai Y, Lv J, Feng J (2013) Spectral Characterization of Four Kinds of Biodegradable Plastics: Poly (Lactic Acid), Poly (Butylenes Adipate-Co-Terephthalate), Poly (Hydroxybutyrate-Co-Hydroxyvalerate) and Poly (Butylenes Succinate) with FTIR and Raman Spectroscopy. J Polym Environ 21:108–114

    Article  CAS  Google Scholar 

  48. Furukawa T, Sato H, Murakami R, Zhang J, Duan Y-X, Noda I, Ochiai S, Ozaki Y (2005) Structure, Dispersibility, and Crystallinity of Poly(hydroxybutyrate)/Poly(l-lactic acid) Blends Studied by FT-IR Microspectroscopy and Differential Scanning Calorimetry. Macromolecules 38:6445

    Article  CAS  Google Scholar 

  49. Kennouche S, Le Moigne N, Kaci M, Quantin J-C, Caro-Bretelle A-S, Delaite C, Lopez-Cuesta J-M (2016) Morphological characterization and thermal properties of compatibilized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/poly(butylene succinate) (PBS)/halloysite ternary nanocomposites. Eur Polymer J 75:142–162

    Article  CAS  Google Scholar 

  50. Han Y-K, Kim S-R, Kim J (2002) Macromol Res 10:108

    Article  CAS  Google Scholar 

  51. Das D, Sethy S, Satapathy BK (2018) Matrix tacticity controlled tuning of microstructure, constitutive behavior and rheological percolation effect of melt-mixed amino-functionalized MWCNT/PP nanocomposites. Polym Eng Sci 58:1115–1126

    Article  CAS  Google Scholar 

  52. Sethy S, Samantara L, Satapathy BK (2020) Phase-selective micro-structural effects on rheological-networks, segmental relaxation, and electrical conductivity behavior of melt-mixed polyamide-12/polypropylene-multi walled carbon nanotubes ternary nanocomposites. Polym Eng Sci 60:1301–1315

    Article  CAS  Google Scholar 

  53. Wongwiwattana P, Thomas NL (2021) Co-continuous phase prediction in poly(lactic acid) /poly(caprolactone) blends from melt viscosity measurements. Polym Plast Technol Mater 60:1393–1410

    CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge PTT MCC Biochem Company (Bangkok, Thailand) for their help in providing BioPBS at nominal cost.

Funding

The financial assistance offered by the Ministry of Education, India, through the MHRD fellowship programme and the funding support by ICMR grant no: 5/3/8/45/2020-ITR are highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Harshal Peshne: Writing – original draft, conceptualization, investigation, methodology, data collection and analysis. Bhabani K. Satapathy: Supervision, funding acquisition, writing – review & editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bhabani K. Satapathy.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peshne, H., Satapathy, B.K. Comparative studies of structural, thermal, mechanical, rheological and dynamic mechanical response of melt mixed PHB/bio-PBS and PHBV/bio-PBS blends. J Polym Res 29, 496 (2022). https://doi.org/10.1007/s10965-022-03323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03323-9

Keywords

Navigation