Skip to main content
Log in

Enhanced electroactive phase, dielectric properties and tuning of bandgap in Ho3+ modified PVDF-HFP composite films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Free-standing self-polarised films of Ho3+ modified Polyvinylidene fluoride co-hexafluoropropylene (PVDF-HFP) have been prepared using a simple and cost-effective solvent casting method. A study was initiated to bring out the impact of rare earth hydrated salt on the electroactive nucleation of PVDF-HFP. Holmium hydrated salt acts as an excellent filler to induce electroactive γ and β phases of PVDF-HFP. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and Raman spectroscopy were used to authenticate the enhancement in the electroactive phases of PVDF-HFP. Furthermore, differential scanning calorimetric (DSC) measurements reveal an increase in the melting temperature, which indicates an enhancement in the polar β phase. An excellent enhancement in the dielectric constant value has been observed for Ho3+ incorporated composite films. The value reached 24 ~ (at 1 kHz), which is ~3 times greater than the pure polymer for the highest salt-loaded film. The effect of rare earth hydrated salt on the optical properties of the PVDF-HFP composite films has also been examined by analysing the direct and indirect band gaps of hybrid films. In addition, the ferroelectric properties of the prepared composites were also analysed by P-E measurements, and the composite films show remarkable improvement in polarisation. These multi-functionalities, such as the enhanced electroactive nature, flexibility lightweight, high value of dielectric constant, and the possibility for bandgap tuning make the prepared PVDF-HFP/Ho3+ cast films useful in piezo, photonic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Motlagh NH, Mohammadrezaei M, Hunt J, Zakeri B (2020) Internet of Things (IoT) and the energy sector. Energies 13:494

    Article  Google Scholar 

  2. Bedi G, Venayagamoorthy GK, Singh R, Brooks RR, Wang KC (2018) Review of Internet of Things (IoT) in electric power and energy systems. IEEE Internet Things J 5:847–870

    Article  Google Scholar 

  3. Shirvanimoghaddam M, Shirvanimoghaddam K, Abolhasani MM, Farhangi M, ZahiriBarsari V, Liu H, Dohler M, Naebe M (2019) Towards a green and self-powered Internet of Things using piezoelectric energy harvesting. IEEE Access 7:94533–94556

    Article  Google Scholar 

  4. Sukumaran S, Chatbouri S, Rouxel D, Tisserand E, Thiebaud F, Ben Zineb T (2021) Recent advances in flexible PVDF based piezoelectric polymer devices for energy harvesting applications. J Intell Mater Syst Struct 32:746–780

    Article  CAS  Google Scholar 

  5. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog Polym Sci. https://doi.org/10.1016/j.progpolymsci.2013.07.006

    Article  Google Scholar 

  6. Costa P, Nunes-Pereira J, Pereira N, Castro N, Gonçalves S, Lanceros-Mendez S (2019) Recent progress on piezoelectric, pyroelectric, and magnetoelectric polymer‐based energy‐harvesting devices. Energy Technol 7(7):1800852

  7. Surmenev RA, Chernozem RV, Pariy IO, Surmeneva MA (2021) A review on piezo- and pyroelectric responses of flexible nano- and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy 79:105442

    Article  CAS  Google Scholar 

  8. Ameduri B (2009) From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem Rev 109:6632–6686

    Article  CAS  PubMed  Google Scholar 

  9. Ameduri B (2022) Copolymers of vinylidene fluoride with functional comonomers and applications therefrom: Recent developments, challenges and future trends. Prog Polym Sci 133:101591

    Article  CAS  Google Scholar 

  10. Martins P, Lanceros-Méndez S (2013) Polymer-based magnetoelectric materials. Adv Funct Mater 23:3371–3385

    Article  CAS  Google Scholar 

  11. Hu X, Ding Z, Fei L, Xiang Y, Lin Y (2019) Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films. J Mater Sci 54:6401–6409

    Article  CAS  Google Scholar 

  12. Yang J, Zhang Y, Li Y, Wang Z, Wang W, An Q, Tong W (2021) Piezoelectric nanogenerators based on graphene oxide/PVDF electrospun nanofiber with enhanced performances by in-situ reduction. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2020.101629

    Article  Google Scholar 

  13. Ponnamma D, Chamakh MM, Alahzm AM, Salim N, Hameed N, AlMaadeed MAA (2020) Core-shell nanofibers of polyvinylidene fluoride-based nanocomposites as piezoelectric nanogenerators. Polymers 12(10):2344

    Article  Google Scholar 

  14. Behera C, Pradhan N, Das PR, Choudhary RNP (2022) Development of self-standing, lightweight and flexible polymer-cobalt ferrite nanocomposites for field sensor. J Polym Res 29:1–16

    Article  Google Scholar 

  15. Anand A, Meena D, Dey KK, Bhatnagar MC (2020) Enhanced piezoelectricity properties of reduced graphene oxide (RGO) loaded polyvinylidene fluoride (PVDF) nanocomposite films for nanogenerator application. J Polym Res 27:1–11

    Article  Google Scholar 

  16. Dutta B, Bose N, Kar E, Das S, Mukherjee S (2017) Smart, lightweight, flexible NiO/poly(vinylidene flouride) nanocomposites film with significantly enhanced dielectric, piezoelectric and EMI shielding properties. J Polym Res 24:1–15

    Article  CAS  Google Scholar 

  17. Ruan L, Yao X, Chang Y, Zhou L, Qin G, Zhang X (2018) Properties and applications of the β phase poly (vinylidene fluoride). Polymers 10(3):228

  18. Hoque NA, Thakur P, Roy S, Kool A, Bagchi B, Biswas P, Saikh MM, Khatun F, Das S, Ray PP (2017) Er3+/Fe3+ stimulated electroactive, visible light emitting, and high dielectric flexible PVDF film based piezoelectric nanogenerators: a simple and superior self-powered energy harvester with remarkable power density. ACS Appl Mater Interfaces 9(27):23048–23059

  19. Neese B, Wang Y, Chu B, Ren K, Liu S, Zhang QM, Huang C, West J (2007) Piezoelectric responses in poly(vinylidene fluoride/hexafluoropropylene) copolymers. Appl Phys Lett. https://doi.org/10.1063/1.2748076

    Article  Google Scholar 

  20. Karan SK, Bera R, Paria S, Das AK, Maiti S, Maitra A, Khatua BB (2016) An approach to design highly durable piezoelectric nanogenerator based on self-poled PVDF/AlO-rGO flexible nanocomposite with high power density and energy conversion efficiency. Adv Energy Mater 6:1601016

    Article  Google Scholar 

  21. Chacko SK, Rahul MT, Raneesh B, Kalarikkal N (2020) Enhanced magnetoelectric coupling and dielectric constant in flexible ternary composite electrospun fibers of PVDF-HFP loaded with nanoclay and NiFe 2 O 4 nanoparticles. New J Chem 44:11356–11364

    Article  CAS  Google Scholar 

  22. Parangusan H, Ponnamma D, Al-Maadeed MAA (2018) Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Sci Rep. https://doi.org/10.1038/S41598-017-19082-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mahanty B, Ghosh SK, Jana S, Roy K, Sarkar S, Mandal D (2021) All-fiber acousto-electric energy harvester from magnesium salt-modulated PVDF nanofiber. Sustain Energy Fuels 5:1003–1013

    Article  CAS  Google Scholar 

  24. Abdolmaleki H, Agarwala S (2020) PVDF-BaTiO3 nanocomposite inkjet inks with enhanced β-phase crystallinity for printed electronics. Polymers 12(10):2430

    Article  CAS  Google Scholar 

  25. Singh HH, Singh S, Khare N (2017) Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal. Compos Sci Technol 149:127–133

    Article  CAS  Google Scholar 

  26. Li L, Zhang M, Rong M, Ruan W (2014) Studies on the transformation process of PVDF from α to β phase by stretching. RSC Adv 4:3938–3943

    Article  CAS  Google Scholar 

  27. Lim JY, Kim S, Seo Y (2015) Enhancement of β-phase in PVDF by electrospinning. AIP Conf Proc. https://doi.org/10.1063/1.4918441

    Article  Google Scholar 

  28. Yuennan J, Sukwisute P, Muensit N (2018) Effect of hydrated salts on the microstructure and phase transformation of poly(vinylidenefluoride-hexafluoropropylene) composites. Mater Res Express. https://doi.org/10.1088/2053-1591/aabf4d

    Article  Google Scholar 

  29. Sobola D, Kaspar P, Částková K, Dallaev R, Papež N, Sedlák P, Trčka T, Orudzhev F, Kaštyl J, Weiser A, Knápek A, Holcman V (2021) PVDF fibers modification by nitrate salts doping. Polymers 13:2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sui Y, Luo H, Xing MM, Zhu Y, Zeng FX (2017) Dielectric, ferroelectric, and photoluminescent properties of Dy3+ doped flexible multifunctional PVDF films. Ferroelectrics 520:212–223

    Article  CAS  Google Scholar 

  31. Ghosh SK, Xie M, Bowen CR, Davies PR, Morgan DJ, Mandal D (2017) A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure. Sci Rep 7:16703

    Article  PubMed  PubMed Central  Google Scholar 

  32. Adhikary P, Garain S, Ram S, Mandal D (2016) Flexible hybrid eu3+ doped P(VDF-HFP) nanocomposite film possess hypersensitive electronic transitions and piezoelectric throughput. J Polym Sci B Polym Phys. https://doi.org/10.1002/polb.24144

    Article  Google Scholar 

  33. Thakur P, Kool A, Bagchi B, Hoque NA, Das S, Nandy P (2015) The role of cerium(iii)/yttrium(iii) nitrate hexahydrate salts on electroactive β phase nucleation and dielectric properties of poly(vinylidene fluoride) thin films. RSC Adv 5:28487–28496

    Article  CAS  Google Scholar 

  34. Wang X, Xiao C, Liu H, Huang Q, Hao J, Fu H (2018) Poly(vinylidene fluoride-hexafluoropropylene) porous membrane with controllable structure and applications in efficient oil/water separation. Materials. https://doi.org/10.3390/MA11030443

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tiwari S, Gaur A, Kumar C, Maiti P (2019) Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting. Energy 171:485–492

    Article  CAS  Google Scholar 

  36. Huang L, Lu C, Wang F, Wang L (2014) Preparation of PVDF/graphene ferroelectric composite films by in situ reduction with hydrobromic acids and their properties. RSC Adv 4:45220–45229

    Article  CAS  Google Scholar 

  37. Jana S, Garain S, Sen S, Mandal D (2015) The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF films. Phys Chem Chem Phys 17:17429–17436

    Article  CAS  PubMed  Google Scholar 

  38. Ponnamma D, Al-maadeed MAA (2018) Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO 3 for mechanical energy harvesting. Emerg Mater 55–65

  39. Vasundhara K, Mandal BP, Tyagi AK (2015) Enhancement of dielectric permittivity and ferroelectricity of a modified cobalt nanoparticle and polyvinylidene fluoride based composite. RSC Adv 5:8591–8597

    Article  CAS  Google Scholar 

  40. Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR. RSC Adv 7:15382–15389

    Article  CAS  Google Scholar 

  41. Hao YN, Wang XH, O’Brien S, Lombardi J, Li LT (2015) Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density. J Mater Chem C Mater 3:9740–9747

    Article  CAS  Google Scholar 

  42. Gregorio R (2006) Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 100:3272–3279

    Article  CAS  Google Scholar 

  43. Yin Z, Tian B, Zhu Q, Duan C (2019) Characterization and application of PVDF and its copolymer films prepared by spin-coating and Langmuir–Blodgett method. Polymers, 11(12):2033

  44. Rahul MT, Chacko SK, Raneesh B, Philip KA, Kalarikkal N, Rouxel D, Munirathinam P, Chandrasekhar A (2022) Hydrated metal salt and Y3Fe5O12–Na0.5K0.5NbO3-incorporated P(VDF-HFP) films: a promising combination of materials with multiferroic and energy harvesting properties. J Mater Sci 57:7653–7666

    Article  CAS  Google Scholar 

  45. Sarkar R, Kundu TK (2020) Hydrogen bond interactions of hydrated aluminum nitrate with PVDF, PVDF-TrFE, and PVDF-HFP: A density functional theory-based illustration. Int J Quantum Chem 120:1–23

    Article  Google Scholar 

  46. He X, Yao K (2006) Crystallization mechanism and piezoelectric properties of solution-derived ferroelectric poly(vinylidene fluoride) thin films. Appl Phys Lett 89:112909

    Article  Google Scholar 

  47. Peleš A, Aleksić O, Pavlović VP, Djoković V, Dojčilović R, Nikolić Z, Marinković F, Mitrić M, Blagojević V, Vlahović B, Pavlović VB (2018) Structural and electrical properties of ferroelectric poly (vinylidene fluoride) and mechanically activated ZnO nanoparticle composite films. Physica Scripta 93(10):105801

  48. Constantino CJL, Job AE, Simões RD, Giacometti JA, Zucolotto V, Oliveira ON, Gozzi G, Chinaglia DL (2005) Phase transition in poly(vinylidene fluoride) investigated with micro-Raman spectroscopy. Appl Spectrosc 59:275–279

    Article  CAS  PubMed  Google Scholar 

  49. Yaqoob U, Uddin ASMI, Chung G-S (2016) The effect of reduced graphene oxide on the dielectric and ferroelectric properties of PVDF–BaTiO 3 nanocomposites. RSC Adv 6:30747–30754

    Article  CAS  Google Scholar 

  50. Falcao EA, Aguiar LW, Guo R, Bhalla AS (2021) Optical absorption of Nd2O3-Doped polyvinylidene fluoride films. Mater Chem Phys 258:123904

    Article  CAS  Google Scholar 

  51. Guggillia P, Chilvery A, Powell R (2017) Reducing the bandgap energy via doping process in lead-free thin film nanocomposites. Res Rev J Mater Sci 05:34–44

    Google Scholar 

  52. El-Sayed S, Abdel-Baset TA, Hassen A (2014) Dielectric properties of PVDF thin films doped with 3 wt.% of R Cl 3 ( R = Gd or Er). AIP Adv 4:037114

    Article  Google Scholar 

  53. Mayeen A, Subair SS, Nair KMS, Thomas S, Kalarikkal N (2020) Morphological and electrical properties of calcium ferrite loaded polyvinyldene fluoride-hexafluoro propylene nanofibers. AIP Conf Proc 2287:020002

    Article  CAS  Google Scholar 

  54. Hassen A, Hanafy T, El-Sayed S, Himanshu A (2011) Dielectric relaxation and alternating current conductivity of polyvinylidene fluoride doped with lanthanum chloride. J Appl Phys. https://doi.org/10.1063/1.3669396

    Article  Google Scholar 

  55. Mayeen A, Kala MS, Jayalakshmy MS, Thomas S, Rouxel D, Philip J, Bhowmik RN, Kalarikkal N (2018) Dopamine functionalization of BaTiO3: An effective strategy for the enhancement of electrical, magnetoelectric and thermal properties of BaTiO3-PVDF-TrFE nanocomposites. Dalton Trans 47:2039–2051

    Article  CAS  PubMed  Google Scholar 

  56. Matsuda Y, Ota Y, Tasaka S (2013) Changes in the melting temperature and crystal structure of poly(vinylidene fluoride) by knotting. J Appl Polym Sci 128:3107–3112

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author acknowledges the financial support received from UGC-DAE Kolkata Centre through the CRS project (No.UGC-DAE-CSR-KC/CRS/19/RC13/0991/1026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Raneesh.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 435 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chacko, S.K., Rahul, M.T., Raneesh, B. et al. Enhanced electroactive phase, dielectric properties and tuning of bandgap in Ho3+ modified PVDF-HFP composite films. J Polym Res 29, 493 (2022). https://doi.org/10.1007/s10965-022-03318-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03318-6

Keywords

Navigation