Skip to main content
Log in

Quantitatively evaluation of the hydrogen bonding, wettability and sorption behaviors of poly(vinyl alcohol)/tea polyphenols composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The hydrogen, H, bonding, wettability and sorption behaviors of the poly(vinyl alcohol), PVA and tea polyphenols, TP, blended composites with various blending ratios were quantitatively evaluated. The H-bonding of PVA/TP composites has been found contributed from not only the pure PVA and TP, but also the formed composites and would be enhanced with the TP percent increase. The pure PVA has better hydrophilicity and the PVA/TP composites would enhance the hydrophobicity with the increase of TP percent. According to wetting results, the added TP percent at about 35% seeming to be a critical turning point for PVA/TP composites to change the wettability. The sorption of PVA/TP composites was greatly influenced by the pH of solution due to it greater in the base solution and smaller in the acid solution as comparison with the referenced water sorption. In all these cases, the sorption amount was basically reduced with the TP percent increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data, models, and code generated or used during the study appear in the submitted article.

References

  1. Netravali AN, Chabba S (2003) Composites get greener. Mater Today 6:22–29

    Article  Google Scholar 

  2. Yeo JCC, Muiruri JK, Tan BH, Thitsartarn W, Kong J, Zhang X, Li Z, He C (2018) Biodegradable PHB-rubber copolymer toughened pla green composites with ultrahigh extensibility. ACS Sustainable Chem Eng 6:15517–15527

    Article  CAS  Google Scholar 

  3. Dai Z, Yang ZW, Chen ZW, Zhao ZX, Lou YJ, Zhang YY, Liu TX, Fu FY, Fu YQ, Liu XD (2018) Fully biobased composites of an itaconic acid derived unsaturated polyester reinforced with cotton fabrics. ACS Sustain Chem Eng 6:15056–15063

    Article  CAS  Google Scholar 

  4. Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40:696–753

    Article  CAS  PubMed  Google Scholar 

  5. Mahmood H, Moniruzzaman M, Yusup S, Welton S (2017) Ionic liquids assisted processing of renewable resources for the fabrication of biodegradable composite materials. Green Chem 19:2051–2075

    Article  CAS  Google Scholar 

  6. Trache D, Klapötke TM, Maiz L, Abd-Elghany M, DeLuca LT (2017) Recent advances in new oxidizers for solid rocket propulsion. Green Chem 19:4711–4736

    Article  CAS  Google Scholar 

  7. Shaghaleh H, Xu X, Wang S (2018) Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Adv 8:825–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu M, Shuai H, Cheng Q, Jiang L (2014) Bioinspired green composite lotus fibers. Angew Chem Int Ed 53:3358–3361

    Article  CAS  Google Scholar 

  9. Qiu Y, Wu D, Yan L, Zhou Y (2016) Recycling of spodumene slag: preparation of green polymer composites. RSC Adv 6:36942–36953

    Article  CAS  Google Scholar 

  10. Fang Y, Wang J, Li L, Liu Z, Jin P, Tang C (2016) Preparation of chromatic composite hollow nanoparticles containing mixed metal oxides for full-color electrophoretic displays. J Mater Chem C 4:5664–5670

    Article  CAS  Google Scholar 

  11. Feng L, Li JF, Ye JR, Song W, Jia J, Shen Q (2014) Enhancing the mechanical and thermal properties of polyacrylonitrile though blending with tea polyphenols. J Appl Polym Sci 131:40411

    Article  Google Scholar 

  12. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Prog Mater Sci 50:962–1079

    Article  CAS  Google Scholar 

  13. Faruk O, Bledzki AK, Fink HP, Sain M (2012) Biocomposites reinforced with natural fibers. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  14. Chen C, Tang Z, Ma Y, Qiu W, Yang F, Mei J, Xie J (2018) Physicochemical, microstructural, antioxidant and antimicrobial properties of active packaging films based on poly(vinyl alcohol)/clay nanocomposite incorporated with tea polyphenols. Prog Organic Coat 123:176–184

    Article  CAS  Google Scholar 

  15. Jankun J, Selman SH, Swiercz R, Skrzypczak-Jankun E (1997) Why drinking green tea could prevent cancer. Nature 387:561–561

    Article  CAS  PubMed  Google Scholar 

  16. Nakagawa T, Yokozawa K, Terasawa S, Shu L, Juneja R (2002) Protective activity of green tea against free radical- and glucose-mediated protein damage. J Agric Food Chem 50:2418–2422

    Article  CAS  PubMed  Google Scholar 

  17. Ferreira D, Gross GG, Kolodziej H, Yoshida T (2005) Stereoselective synthesis of monomeric flavonoids. Phytochem 66:2124–2126

    Article  CAS  Google Scholar 

  18. Bate-Smith EC, Swain T (1989) In Comparative Biochemistry, Mason, H. S., Brandrup, J. Immergut, E. H. Eds. Polymer Handbook, 3rd. John Wiley and Sons, USA

  19. Haslam E (1996) Natural polyphenois (vegetable tannins) as drugs: possible modes of action. J Nat Prod 59:205–215

    Article  CAS  PubMed  Google Scholar 

  20. Handique JG, Baruah JB (2002) Polyphenolic compounds: an overview. React Funct Polym 52:163–188

    Article  CAS  Google Scholar 

  21. Hyon SH, Cha WI, Ikada Y, Kita M, Ogura Y, Honda Y (1994) J Biomater Sci Poly Ed 5:397

    Article  CAS  Google Scholar 

  22. Lee YM, Kim SY, Kim SJ (1996) Polym 37:5897

    Article  Google Scholar 

  23. Follain N, Joly C, Dole P, Bliard C (2005) Carbohyd Polym 60:185

    Article  CAS  Google Scholar 

  24. Liu T, Jiao C, Peng X, Chen YN, Chen Y, He C, Liu R, Wang H (2018) J Mater Chem B 6:8105

    Article  CAS  PubMed  Google Scholar 

  25. Zhang C, Liang K, Zhou D, Yang H, Liu X, Yin X, Xu W, Zhou Y, Xiao P (2018) ACS Appl Mater Interfaces 10:27692

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Lu Y, Zhang J, Hu X, Yang Z, Guo Y, Wang Y (2019) J Mater Chem B 7:538

    Article  PubMed  Google Scholar 

  27. Lai D, Chen X, Liu X, Wang Y (2018) ACS Appl Nano Mater 1:5854

    CAS  Google Scholar 

  28. Xu H, Yin X, Li X, Li M, Liang S, Zhang L, Cheng L (2019) ACS  Appl Mater Interfaces 11:10198

    Article  CAS  PubMed  Google Scholar 

  29. Huang J, Li Z, Wu X, Wang J, Yang S (2019) J Phys Chem C 123:3781

    Article  CAS  Google Scholar 

  30. Roddecha S, Li YC, Phraewphiphat T (2019) Ind Eng Chem Res 58:632

    Article  CAS  Google Scholar 

  31. Zhang Y, Ma Q, Wang S, Liu X, Li L (2018) ACS Nano 12:4824

    Article  CAS  PubMed  Google Scholar 

  32. Huang Q, Wan C, Loveridge M, Bhagat R (2018) ACS Appl Energy Mater 1:6890

    CAS  Google Scholar 

  33. Dai Y, Tang Q, Zhang Z, Yu C, Li H, Xu L, Zhang S, Zou Z (2018) RSC Adv 8:38681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vasanthakumar V, Mohanapriya S, Priyadharsan A, Anbarasan PM, Nambissan PMG, Raj V (2019) New J Chem 43:2942

    Article  CAS  Google Scholar 

  35. Zhang LH, Shen Q (2020) Fully green poly(vinyl alcohol)/tea polyphenols composites and super anti-ultraviolet and –bacterial properties. Macromol Mater Eng 305(3):201900669

    Article  Google Scholar 

  36. Zhang L, Shen Q, Cheng YF (2022) Chitosan/tea polyphenols-based anti-ultraviolet soft contact lens. Bull Mater Sci 45:161

    Article  Google Scholar 

  37. Wang H, Chen L, Weng LL, Zhang MY, Shen Q (2014) J Adhesion Sci Technol 28:2416

    Article  CAS  Google Scholar 

  38. Kubo S, Kadla JF (2003) Biomacromol 4:561

    Article  CAS  Google Scholar 

  39. He Y, Zhu B, Inoue Y (2004) Prog Polym Sci 29:1021

    Article  CAS  Google Scholar 

  40. Marilyn LM, Han GC, Satish K (2006) Polymer 47:3705

    Article  Google Scholar 

  41. Shen Q, Mezgebe M, Li F, Dong JQ (2011) Liquid adsorption behavior and surface properties of polyaniline doped by lignosulfonated modified carbon nanotubes. Coll Surf A 390:212–215

    Article  CAS  Google Scholar 

  42. Mezgebe M, Shen Q, Zhang JY, Zhao YW (2012) Liquid adsorption behavior and surface properties of carbon black. Coll Surf A 453:25–28

    Article  Google Scholar 

  43. Chen LF, Shen Q, Shen JP, Shi DT, Chen T, Yu HR (2012) Studies and comparison of the liquid adsorption behavior and surface properties of α-, β-, and γ-cyclodextrins. Coll Surf A 411:69–73

    Article  CAS  Google Scholar 

  44. Fei B, Shen Q (2018) Effects of the molecule weight on the liquid adsorption, surface free energy and rheological properties of dextran. J Macromol Sci A 55(8):611–617

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Chongqing Education Commission issued as KJQN20224402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Shen.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, LH. & Shen, Q. Quantitatively evaluation of the hydrogen bonding, wettability and sorption behaviors of poly(vinyl alcohol)/tea polyphenols composites. J Polym Res 29, 485 (2022). https://doi.org/10.1007/s10965-022-03301-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03301-1

Keywords

Navigation