Skip to main content

Advertisement

Log in

Study of some mechanical and physical properties of PMMA reinforced with (TiO2 and TiO2-GO) nanocomposite for denture bases

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The goal of this research is to prepare and characterize PMMA/TiO2 and PMMA/TiO2-GO nanocomposites for potential application as dental materials. PMMA/TiO2 and PMMA/TiO2-GO with various percentages (1 wt%, 3 wt%, and 5 wt%) of TiO2 nanoparticles were prepared using the manual mixing method. The mechanical and physical properties of nanocomposites were improved and compared with pure PMMA. According to the findings of this study, PMMA nanocomposites have the potential to be used in dental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J (2001) Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer (Guildf) 42(21):8759–8768

    Article  CAS  Google Scholar 

  2. Eakle WS, Bastin KG (2019) Dental materials: clinical applications for dental assistants and dental hygienists. Elsevier Health Sciences

  3. Pan Y, Liu F, Xu D, Jiang X, Yu H, Zhu M (2013) Novel acrylic resin denture base with enhanced mechanical properties by the incorporation of PMMA-modified hydroxyapatite. Prog Nat Sci Mater Int 23(1):89–93

    Article  Google Scholar 

  4. Pires-de-Souza FD, Panzeri H, Vieira MA, Garcia LD, Consani S (2009) Impact and fracture resistance of an experimental acrylic polymer with elastomer in different proportions. Mater Res 12(4):415–418

  5. Alrahlah A, Fouad H, Hashem M, Niazy AA, AlBadah A (2018) Titanium Oxide (TiO2)/polymethylmethacrylate (PMMA) denture base nanocomposites: Mechanical, viscoelastic and antibacterial behavior. Materials (Basel) 11(7). https://doi.org/10.3390/ma11071096

  6. Rakhshan V (2015) Marginal integrity of provisional resin restoration materials: A review of the literature. Saudi J Dent Res 6(1):33–40

    Article  Google Scholar 

  7. Zhang X, Zhang X, Zhu B, Lin K, Chang J (2012) Mechanical and thermal properties of denture PMMA reinforced with silanized aluminum borate whiskers. Dent Mater J 31(6):903–908

    Article  Google Scholar 

  8. Kim S-H, Watts DC (2004) The effect of reinforcement with woven E-glass fibers on the impact strength of complete dentures fabricated with high-impact acrylic resin. J Prosthet Dent 91(3):274–280

    Article  CAS  Google Scholar 

  9. Santos M, Soo S, Petridis H (2013) The effect of Parylene coating on the surface roughness of PMMA after brushing. J Dent 41(9):802–808

    Article  CAS  Google Scholar 

  10. Yadav NS, Elkawash H (2011) Flexural strength of denture base resin reinforced with aluminum oxide and processed by different processing techniques. J Adv Oral Res 2(1):33–36

    Article  Google Scholar 

  11. Vallo CI, Abraham GA, Cuadrado TR, San Román J (2004) Influence of cross‐linked PMMA beads on the mechanical behavior of self‐curing acrylic cements. J Biomed Mater Res Part B Appl Biomater An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 70(2):407–416

  12. Lessa FCR, Enoki C, Ito IY, Faria G, Matsumoto MAN, Nelson-Filho P (2007) In-vivo evaluation of the bacterial contamination and disinfection of acrylic baseplates of removable orthodontic appliances. Am J Orthod Dentofac Orthop 131(6):705–e11

    Article  Google Scholar 

  13. Makaremi M et al (2017) Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications. ACS Appl Mater Interfaces 9(20):17476–17488

    Article  CAS  Google Scholar 

  14. Cavallaro G et al (2017) Halloysite nanotubes: Controlled access and release by smart gates. Nanomaterials 7(8):199

    Article  Google Scholar 

  15. Yang Y, Chen Y, Leng F, Huang L, Wang Z, Tian W (2017) Recent advances on surface modification of halloysite nanotubes for multifunctional applications. Appl Sci 7(12):1215

    Article  Google Scholar 

  16. Xu K et al (2016) Effect of titanium dioxide nanoparticles on silkworm’s innate immunity and resistance to bacillus bombyseptieus. Sci Adv Mater 8(8):1512–1522

    Article  CAS  Google Scholar 

  17. Pant HR, Pandeya DR, Nam KT, Baek W, Hong ST, Kim HY (2011) Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles. J Hazard Mater 189(1–2):465–471

    Article  CAS  Google Scholar 

  18. Reijnders L (2009) The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab 94(5):873–876

    Article  CAS  Google Scholar 

  19. Chatterjee A (2010) Properties improvement of PMMA using nano TiO2. J Appl Polym Sci 118(5):2890–2897

    Article  CAS  Google Scholar 

  20. Chatterjee A (2010) Effect of nanoTiO2 addition on poly (methyl methacrylate): an exciting nanocomposite. J Appl Polym Sci 116(6):3396–3407

    CAS  Google Scholar 

  21. Zhou R, Lu DH, Jiang YH, Li QN (2005) Mechanical properties and erosion wear resistance of polyurethane matrix composites. Wear 259(1–6):676–683

    Article  CAS  Google Scholar 

  22. Anwar MS, Danish R, Ahmed F, Koo BH (2016) Pressure dependent synthesis and enhanced photocatalytic activity of TiO2 nano-structures. Nanosci Nanotechnol Lett 8(9):778–781

    Article  Google Scholar 

  23. Terrones M et al (2010) Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today 5(4):351–372

    Article  Google Scholar 

  24. Szabó T, Tombácz E, Illés E, Dékány I (2006) Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides. Carbon N Y 44(3):537–545

    Article  Google Scholar 

  25. Xu JY, Liu J, Li KD, Miao L, Tanemura S (2015) Novel PEPA-functionalized graphene oxide for fire safety enhancement of polypropylene. Sci Technol Adv Mater

  26. Bacali C et al (2019) The influence of graphene in improvement of physico-mechanical properties in PMMA denture base resins. Materials (Basel) 12(14). https://doi.org/10.3390/ma12142335

  27. Li X et al (2022) Graphene-Based Nanomaterials for Dental Applications: Principles, Current Advances, and Future Outlook. Front Bioeng Biotechnol 10(March):1–21. https://doi.org/10.3389/fbioe.2022.804201

    Article  Google Scholar 

  28. Alamgir M, Nayak GC, Mallick A, Tiwari SK, Mondal S, Gupta M (2018) Processing of PMMA nanocomposites containing biocompatible GO and TiO2 nanoparticles. Mater Manuf Process 33(12):1291–1298

    Article  CAS  Google Scholar 

  29. Alamgir M, Mallick A, Nayak GC, Tiwari SK (2019) Development of PMMA/TiO2 nanocomposites as excellent dental materials. J Mech Sci Technol 33(10):4755–4760

    Article  Google Scholar 

  30. Song J, Zhang J, Lin C (2013) Influence of graphene oxide on the tribological and electrical properties of PMMA composites. J Nanomater

  31. Du Y, Bai Y, Liu Y, Guo Y, Cai X, Feng Q (2016) One-Pot Synthesis of [111]-/{010} Facets Coexisting Anatase Nanocrystals with Enhanced Dye-Sensitized Solar Cell Performance. ChemistrySelect 1(21):6632–6640

    Article  CAS  Google Scholar 

  32. Saadon R, Azeez OA (2014) Chemical route to synthesis hierarchical ZnO thick films for sensor application. Energy Procedia 50:445–453

    Article  CAS  Google Scholar 

  33. Shakir W, Mohammed M, Hilal I (2019) Mechanical Characteristics of (TiO2-ZnO)/PMMA Nanocomposites for Dentures. 59–72. https://www.Ijmrhs.Com/Abstract/Mechanical-Characteristics-of-Tio2Znopmma-Nanocomposites-for-Dentures-15602.html

  34. Oleiwi JK, Anaee RA, Radhi SH (2018) CNTS and NHA as reinforcement to improve flexural and impact properties of uhmwpe nanocomposites for hip joint applications. Composites 6:7

  35. Ke YC, Stroeve P (2005) Polymer-layered silicate and silica nanocomposites. Elsevier

  36. Ahmed MA, Ebrahim MI (2014) Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. World J nano Sci Eng

  37. Balkees MD, Intisar JI, Farrah JE (2018) The effect of Li2SiO3 Nano-fillers addition on some mechanical properties of heat cured polymethyl methacrylate denture base material. Merit Res J 6(8):298–302

    Google Scholar 

  38. Saunders SA (2009) Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics. Clin Cosmet Investig Dent 1:47

    Article  CAS  Google Scholar 

  39. Anusavice KJ, Shen C, Rawls HR (2012) Phillips’ science of dental materials. Elsevier Health Sciences

  40. Seong D-W, Yeo J-S, Hwang S-H (2016) Fabrication of polycarbonate blends with poly (methyl methacrylate-co-phenyl methacrylate) copolymer: miscibility and scratch resistance properties. J Ind Eng Chem 36:251–254

    Article  CAS  Google Scholar 

  41. Blau PJ, Budinski KG (1999) Development and use of ASTM standards for wear testing. Wear 225:1159–1170

    Article  Google Scholar 

  42. Majhi S, Samantarai SP, Acharya SK (2012) Tribological behavior of modified rice husk filled epoxy composite. Int J Sci Eng Res 3(6):180–184

    Google Scholar 

  43. Mansour AA, Al-Ramadhan ZA, Abdulrazaq RA (2021) Mechanical and Physical Properties of PMMA Reinforced HA-MgO Nano-Composite. J Phys Conf Ser 1795(1). https://doi.org/10.1088/1742-6596/1795/1/012039

  44. Al-Kadi FK (2004) Effect of Thermocycling on Some Properties of Soft Denture Linear. A Master Thesis Dep Prosthodont Coll Dent Univ Baghdad

Download references

Acknowledgements

The authors are grateful for the financial support received for this work from the Department of Physics, College of Science, Mustansiriya University, Baghdad, Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisreen Khalid Fahad.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahad, N.K., Sabry, R.S. Study of some mechanical and physical properties of PMMA reinforced with (TiO2 and TiO2-GO) nanocomposite for denture bases. J Polym Res 29, 439 (2022). https://doi.org/10.1007/s10965-022-03284-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03284-z

Keywords

Navigation