Skip to main content
Log in

Study of mechanical anisotropy of single walled carbon nanotube and polyvinyl alcohol polymer nanocomposite with a controlled alignment process

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Single Walled Carbon Nanotube (SWCNT) and polyvinyl alcohol (PVA) Polymer nanocomposites with the controlled mechanical alignment process have been used for structural anisotropy applications due to their desirable thermal and mechanical properties as well as their tunable degradability. In this work, we fabricated the nanocomposite scaffolds from forming hydrogels of individually dispersed SWCNTs and then partial backfilling with PVA polymer. Our fabrication method helps to minimize the aggregation of SWCNT and improve the degree of uniform dispersion of SWCNT in the polymer matrix. We further compared the mechanical properties in both directions of nanocomposite with different SWCNTs concentration. We observed that the tensile modulus increases more in the aligned direction than the normal to direction of SWCNTs at optimum 12wt% nanotube loading. Further, the nanotube networks suppress the polymer glass transition and extend the mechanical integrity of the polymer. The controlling internal orientation order of nanotubes with the help of alignment process in nanocomposite scaffolds can bring interesting highly structural anisotropic properties to a wide range of smart material industries such as aerospace, defense, and healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44:1624–1652

    Article  CAS  Google Scholar 

  2. Dresselhaus MS, Avouris P (2001) Introduction to carbon materials research. Top Appl Phys 80:1–9

    Article  CAS  Google Scholar 

  3. Islam MF, Milkie DE, Kane CL, Yodh AG, Kikkawa JM (2004) Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. Phys Rev Lett 93:037404

    Article  CAS  PubMed  Google Scholar 

  4. Johnston DE, Islam MF, Yodh AG, Johnson AT (2005) Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide. Nat Mater 4:589–592

    Article  CAS  PubMed  Google Scholar 

  5. Kalakonda P, Banne S (2017) Thermomechanical properties of PMMA and modified SWCNT composites. Nanotechnol Sci Appl 10:45–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kalakonda P, Cabrera Y, Judith R, Georgiev GY, Cebe P, Iannacchione GS (2015) Studies of electrical and thermal conductivities of sheared multi-walled carbon nanotube with isotactic polypropylene polymer composites. Nanomater Nanotechnol 5:2

    Article  Google Scholar 

  7. Kalakonda P, Banne S, Kalakonda PB (2019) Enhanced mechanical properties of multiwalled carbon nanotubes/thermoplastic polyurethane nanocomposites. Nanomater Nanotechnol 9:1–7

    Article  Google Scholar 

  8. Kalakonda P, Kalakonda PB, Banne S (2021) Studies of electrical, thermal, and mechanical properties of single-walled carbon nanotube and polyaniline of nanoporous nanocomposites. Nanomater Nanotechnol 11:1–8

    Article  Google Scholar 

  9. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mat Sci Eng R 49:89–112

    Article  Google Scholar 

  10. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part a-Appl S 41:1345–1367

    Article  Google Scholar 

  11. Halpin JC, Kardos JL (1976) Halpin-Tsai Equations - Review. Polym Eng Sci 16:344–352

    Article  CAS  Google Scholar 

  12. Ponnamma D, Sadasivuni KK, Grohens Y, Guo QP, Thomas S (2014) Carbon nanotube based elastomer composites - an approach towards multifunctional materials. J Mater Chem C 2:8446–8485

    Article  CAS  Google Scholar 

  13. Zhang P, Zhou TF, He LC, Zhang SY, Sun J, Wang JJ, Qin CX, Dai LX (2015) Dispersion of multi-walled carbon nanotubes modified by rosemary acid into poly(vinyl alcohol) and preparation of their composite fibers. Rsc Adv 5:55492–55498

    Article  CAS  Google Scholar 

  14. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P (2000) Macroscopic fibers and ribbons of oriented carbon nanotubes. Science 290:1331–1334

    Article  CAS  PubMed  Google Scholar 

  15. Gui XC et al (2011) A facile route to isotropic conductive nanocomposites by direct polymer infiltration of carbon nanotube sponges. ACS Nano 5:4276–4283

    Article  CAS  PubMed  Google Scholar 

  16. Kobashi K, Nishino H, Yamada T, Futaba DN, Yumura M, Hata K (2011) Epoxy composite sheets with a large interfacial area from a high surface area-supplying single-walled carbon nanotube scaffold filler. Carbon 49:5090–5098

    Article  CAS  Google Scholar 

  17. Ci L, Suhr J, Pushparaj V, Zhang X, Ajayan PM (2008) Continuous carbon nanotube reinforced composites. Nano Lett 8:2762–2766

    Article  CAS  PubMed  Google Scholar 

  18. Ma WJ et al (2009) High-strength composite fibers: realizing true potential of carbon nanotubes in polymer matrix through continuous reticulate architecture and molecular level couplings. Nano Lett 9:2855–2861

    Article  CAS  PubMed  Google Scholar 

  19. Zeng Y, Ci L, Carey BJ, Vajtai R, Ajayan PM (2010) Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites. ACS Nano 4:6798–6804

    Article  CAS  PubMed  Google Scholar 

  20. Zhang L, Xu W, Luo XG, Wang JN (2015) High performance carbon nanotube based composite film from layer-by-layer deposition. Carbon 90:215–221

    Article  CAS  Google Scholar 

  21. Liu YD, Kumar S (2014) Polymer/carbon nanotube nano composite fibers-a review. Acs Appl Mater Inter 6:6069–6087

    Article  CAS  Google Scholar 

  22. Jin L, Bower C, Zhou O (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73:1197–1199

    Article  CAS  Google Scholar 

  23. Thostenson ET, Chou TW (2002) Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization. J Phys D Appl Phys 35:L77–L80

    Article  CAS  Google Scholar 

  24. Zhang Y, Iijima S (1999) Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperature. Appl Phys Lett 75:3087–3089

    Article  CAS  Google Scholar 

  25. Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225

    Article  CAS  Google Scholar 

  26. Najeeb CK, Chang J, Lee JH, Kim JH (2011) Fabrication of aligned ultra-thin transparent conductive films of single-walled carbon nanotubes by a compression/sliding method. Scripta Mater 64:126–129

    Article  CAS  Google Scholar 

  27. Mecklenburg M, Mizushima D, Ohtake N, Bauhofer W, Fiedler B, Schulte K (2015) On the manufacturing and electrical and mechanical properties of ultra-high wt.% fraction aligned Mwcnt and randomly oriented cnt epoxy composites. Carbon 91:275–290

    Article  CAS  Google Scholar 

  28. Smith BW, Benes Z, Luzzi DE, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE (2000) Structural anisotropy of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 77:663–665

    Article  CAS  Google Scholar 

  29. Casavant MJ, Walters DA, Schmidt JJ, Smalley RE (2003) Neat macroscopic membranes of aligned carbon nanotubes. J Appl Phys 93:2153–2156

    Article  CAS  Google Scholar 

  30. Fischer JE, Zhou W, Vavro J, Llaguno MC, Guthy C, Haggenmueller R, Casavant MJ, Walters DE, Smalley RE (2003) Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties. J Appl Phys 93:2157–2163

    Article  CAS  Google Scholar 

  31. Choi ES, Brooks JS, Eaton DL, Al-Haik MS, Hussaini MY, Garmestani H, Li D, Dahmen K (2003) Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 94:6034–6039

    Article  CAS  Google Scholar 

  32. Krupke R, Hennrich F, Kappes MM, Lohneysen HV (2004) Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett 4:1395–1399

    Article  CAS  Google Scholar 

  33. Liu XM, Spencer JL, Kaiser AB, Arnold WM (2004) Electric-field oriented carbon nanotubes in different dielectric solvents. Curr Appl Phys 4:125–128

    Article  Google Scholar 

  34. Chen CX, Zhang YF (2006) Manipulation of single-wall carbon nanotubes into dispersively aligned arrays between metal electrodes. J Phys D Appl Phys 39:172–176

    Article  CAS  Google Scholar 

  35. Chen Z, Yang Y, Chen F, Qing Q, Wu Z, Liu Z (2005) Controllable interconnection of single-walled carbon nanotubes under Ac electric field. J Phys Chem B 109:11420–11423

    Article  CAS  PubMed  Google Scholar 

  36. Martin CA, Sandler JKW, Windle AH, Schwarz MK, Bauhofer W, Schulte K, Shaffer MSP (2005) Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46:877–886

    Article  CAS  Google Scholar 

  37. Kamat PV, Thomas KG, Barazzouk S, Girishkumar G, Vinodgopal K, Meisel D (2004) Self-assembled linear bundles of single wall carbon nanotubes and their alignment and deposition as a film in a Dc field. J Am Chem Soc 126:10757–10762

    Article  CAS  PubMed  Google Scholar 

  38. Zhang RP, Zhu YF, Ma C, Liang J (2009) Alignment of carbon nanotubes in poly(methyl methacrylate) composites induced by electric field. J Nanosci Nanotechno 9:2887–2893

    Article  CAS  Google Scholar 

  39. Ma C, Zhang W, Zhu YF, Ji LJ, Zhang RP, Koratkar N, Liang J (2008) Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field. Carbon 46:706–710

    Article  CAS  Google Scholar 

  40. Zhu YF, Ma C, Zhang W, Zhang RP, Koratkar N, Liang J (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105

  41. Ko F, Gogotsi Y, Ali A, Naguib N, Ye HH, Yang GL, Li C, Willis P (2003) Electrospinning of continuons carbon nanotube-filled nanofiber yarns. Adv Mater 15:1161

    Article  CAS  Google Scholar 

  42. Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC (2004) Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4:459–464

    Article  CAS  Google Scholar 

  43. Kalakonda P, Georgiev G, Cabrera Y, Judith R, Iannacchione G, Cebe P (2014) Thermal and electrical transport properties of sheared and un-sheared thin-film polymer/CNTs nanocomposites. MRS Proc 1660:Mrsf13–1660-tt03–21

  44. Kalakonda P, Daly M, Xu K, Cabrera Y, Judith R, Iannacchione G, Cebe P (2013) Structure-electrical transport property relationship of anisotropic iPP/CNT films. MRS Proc 1499:Mrsf12–1499-n05–83

  45. Kalakonda P, Gombos E, Hoonjan G, Georgiev G, Iannacchione G, Cebe P (2012) Electrical conductivity of anisotropic iPP carbon nanotube thin films. MRS Proc 1410:Mrsf11–1410-dd05–06

  46. Niu H, Guo H, Kang L et al (2022) Vertical alignment of anisotropic fillers assisted by expansion flow in polymer composites. Nano-Micro Lett 14:153

    Article  CAS  Google Scholar 

  47. Yakovenko O, Matzui L, Danylova G et al (2017) Electrical properties of composite materials with electric field-assisted alignment of nanocarbon fillers. Nanoscale Res Lett 12:471

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang Z, Cao Y, Pan D, Hu S (2020) Vertically aligned and interconnected graphite and graphene oxide networks leading to enhanced thermal conductivity of polymer composites. Polymers 12:1121

    Article  CAS  PubMed Central  Google Scholar 

  49. Lei C, Xie Z, Wu K, Fu Q (2021) Controlled vertically aligned structures in polymer composites: natural inspiration, structural processing, and functional application. Adv Mater 33:2103495

    Article  CAS  Google Scholar 

  50. Sierra-Romero A, Chen B (2018) Strategies for the preparation of polymer composites with complex alignment of the dispersed phase. Nanocomposites 4(4):137–155

    Article  CAS  Google Scholar 

  51. Lee J, Stein IY, Kessler SS, Wardle BL (2015) Aligned carbon nanotube film enables thermally induced state transformations in layered polymeric materials. Acs Appl Mater Inter 7:8900–8905

    Article  CAS  Google Scholar 

  52. Lee J, Stein IY, Devoe ME, Lewis DJ, Lachman N, Kessler SS, Buschhorn ST, Wardle BL (2015) Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks. Appl Phys Lett 106

  53. Stein IY, Wardle BL (2014) Morphology and processing of aligned carbon nanotube carbon matrix nanocomposites. Carbon 68:807–813

    Article  CAS  Google Scholar 

  54. Stein IY, Lachman N, Devoe ME, Wardle BL (2014) Exohedral physisorption of ambient moisture scales non-monotonically with fiber proximity in aligned carbon nanotube arrays. ACS Nano 8:4591–4599

    Article  CAS  PubMed  Google Scholar 

  55. Cebeci H, Stein IY, Wardle BL (2014) Effect of nanofiber proximity on the mechanical behavior of high volume fraction aligned carbon nanotube arrays. Appl Phys Lett 104

  56. Handlin D, Stein IY, de Villoria RG, Cebeci H, Parsons, EM, Socrate S, Scotti S, Wardle BL (2013) Three-dimensional elastic constitutive relations of aligned carbon nanotube architectures. J Appl Phys 114

  57. Bryning MB, Milkie DE, Islam MF, Hough LA, Kikkawa JM, Yodh AG (2007) Carbon nanotube aerogels. Adv Mater 19:661

    Article  CAS  Google Scholar 

  58. Monti M, Puglia D, Natali M, Torre L, Kenny JM (2011) Effect of carbon nanofibers on the cure kinetics of unsaturated polyester resin: thermal and chemorheological modelling. Compos Sci Technol 71:1507–1516

    CAS  Google Scholar 

  59. Romyen N, Thongyai S, Praserthdam P (2012) Alignment of carbon nanotubes in polyimide under electric and magnetic fields. J Appl Polym Sci 123:3470–3475

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank to the Carnegie Mellon University, King Abdullah University of Science and Technology (KAUST) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kalakonda.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 430 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalakonda, P., Banne, S. & Kalakonda, P.B. Study of mechanical anisotropy of single walled carbon nanotube and polyvinyl alcohol polymer nanocomposite with a controlled alignment process. J Polym Res 29, 442 (2022). https://doi.org/10.1007/s10965-022-03279-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03279-w

Keywords

Navigation