Skip to main content
Log in

Bulk ring-opening metathesis copolymerization of dicyclopentadiene and 5-ethylidene-2-norbornene: mixing rules, polymerization behaviors and properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work aims to explore the bulk ring-opening metathesis copolymerization of dicyclopentadiene and 5-ethylidene-2-norbornene by modifying the comonomer feed ratios. Thorough studies showed that their performance can be enhanced by polymerization at elevated temperature and there was a little deviation of properties from mixing rules. That is, the copolymers properties depend on monomer composition and can be roughly predicted by empirical mixing rules. We believe this can help researchers design and prepare ROMP derived polydicyclopentadiene copolymers and apply them in more applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xi Y, Yang P, Miao Y, Zhang C, Gu Y (2015) Blends of sulfonated polysulfone/polysulfone/4,4 ’-diaminodiphenyl methane-based benzoxazine: multiphase structures and properties. Polym Int 64:118–125. https://doi.org/10.1002/pi.4766

    Article  CAS  Google Scholar 

  2. Xia Y, Yang P, Zhu R, Zhang C, Gu Y (2014) Blends of 4,4 ’-diaminodiphenyl methane-based benzoxazine and polysulfone: morphologies and properties. J Polym Res 21:387. https://doi.org/10.1007/s10965-014-0387-6

    Article  CAS  Google Scholar 

  3. Wang B, Yang P, Li Y, He Y, Zhu R, Gu Y (2017) Blends of polybenzoxazine/poly(acrylic acid): hydrogen bonds and enhanced performances. Polym Int 66:1159–1163. https://doi.org/10.1002/pi.5370

    Article  CAS  Google Scholar 

  4. Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F (2018) Polylactic acid blends: The future of green, light and tough. Prog Polym Sci 85:83–127. https://doi.org/10.1016/j.progpolymsci.2018.07.001

    Article  CAS  Google Scholar 

  5. Coiai S, Di Lorenzo ML, Cinelli P, Righetti MC, Passaglia E (2021) Binary Green Blends of Poly(lactic acid) with Poly(butylene adipate-co-butylene terephthalate) and Poly(butylene succinate-co-butylene adipate) and Their Nanocomposites. Polymers 13:2489. https://doi.org/10.3390/polym13152489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kovacic S, Slugovc C (2020) Ring-opening Metathesis Polymerisation derived poly(dicyclopentadiene) based materials. Mat Chem Front 4:2235–2255. https://doi.org/10.1039/d0qm00296h

    Article  CAS  Google Scholar 

  7. Matejka L, Houtman C, Macosko CW (1985) Polymerization of dicyclopentadiene - a new reaction injection-molding system. J Appl Polym Sci 30:2787–2803. https://doi.org/10.1002/app.1985.070300707

    Article  CAS  Google Scholar 

  8. Yao Z, Zhou L-w, Dai B-b, Cao K (2012) Ring-opening metathesis copolymerization of dicyclopentadiene and cyclopentene through reaction injection molding process. J Appl Polym Sci 125:2489–2493. https://doi.org/10.1002/app.36359

    Article  CAS  Google Scholar 

  9. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR et al (2001) Autonomic healing of polymer composites. Nature 409:794–797. https://doi.org/10.1038/35057232

    Article  PubMed  CAS  Google Scholar 

  10. Brown EN, White SR, Sottos NR (2005) Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite - Part 1: Manual infiltration. Compos Sci Technol 65:2466–2473. https://doi.org/10.1016/j.compscitech.2005.04.020

    Article  CAS  Google Scholar 

  11. Patel AJ, Sottos NR, Wetzel ED, White SR (2010) Autonomic healing of low-velocity impact damage in fiber-reinforced composites. Compos Pt A-Appl Sci Manuf 41:360–368. https://doi.org/10.1016/j.compositesa.2009.11.002

    Article  CAS  Google Scholar 

  12. Yang P, Wang X, Gu Y (2012) Copolymers of phenolphthalein-aniline-based benzoxazine and biphenyl epoxy: curing behavior and thermal and mechanical properties. J Polym Res 19:9901. https://doi.org/10.1007/s10965-012-9901-x

    Article  CAS  Google Scholar 

  13. Sutthasupa S, Shiotsuki M, Masuda T, Sanda F (2009) Alternating Ring-Opening Metathesis Copolymerization of Amino Acid Derived Norbornene Monomers Carrying Nonprotected Carboxy and Amino Groups Based on Acid-Base Interaction. J Am Chem Soc 131:10546–10551. https://doi.org/10.1021/ja903248c

    Article  PubMed  CAS  Google Scholar 

  14. Huijser S, Mooiweer GD, van der Hofstad R, Staal BBP, Feenstra J et al (2012) Reactivity Ratios of Comonomers from a Single MALDI-ToF-MS Measurement at One Feed Composition. Macromolecules 45:4500–4510. https://doi.org/10.1021/ma300400d

    Article  CAS  Google Scholar 

  15. He Z, Jiang S, An N, Li X, Li Q et al (2019) Self-healing isocyanate microcapsules for efficient restoration of fracture damage of polyurethane and epoxy resins. J Mater Sci 54:8262–8275. https://doi.org/10.1007/s10853-018-03236-3

    Article  CAS  Google Scholar 

  16. Wilson GO, Caruso MM, Schelkopf SR, Sottos NR, White SR, Moore JS (2011) Adhesion Promotion via Noncovalent Interactions in Self-Healing Polymers. ACS Appl Mater Interfaces 3:3072–3077. https://doi.org/10.1021/am200584z

    Article  PubMed  CAS  Google Scholar 

  17. Wilson GO, Caruso MM, Reimer NT, White SR, Sottos NR, Moore JS (2008) Evaluation of ruthenium catalysts for ring-opening metathesis polymerization-based self-healing applications. Chem Mater 20:3288–3297. https://doi.org/10.1021/cm702933h

    Article  CAS  Google Scholar 

  18. Ivanoff DG, Sung J, Butikofer SM, Moore JS, Sottos NR (2020) Cross-Linking Agents for Enhanced Performance of Thermosets Prepared via Frontal Ring-Opening Metathesis Polymerization. Macromolecules 53:8360–8366. https://doi.org/10.1021/acs.macromol.0c01530

    Article  CAS  Google Scholar 

  19. Alzari V, Nuvoli D, Sanna D, Ruiu A, Mariani A (2016) Effect of Limonene on the Frontal Ring Opening Metathesis Polymerization of Dicyclopentadiene. J Polym Sci Pol Chem 54:63–68. https://doi.org/10.1002/pola.27776

    Article  CAS  Google Scholar 

  20. Dean LM, Wu Q, Alshangiti O, Moore JS, Sottos NR (2020) Rapid Synthesis of Elastomers and Thermosets with Tunable Thermomechanical Properties. ACS Macro Lett 9:819–824. https://doi.org/10.1021/acsmacrolett.0c00233

    Article  PubMed  CAS  Google Scholar 

  21. Lloyd EM, Feinberg EC, Gao Y, Peterson SR, Soman B et al (2021) Spontaneous Patterning during Frontal Polymerization. ACS Central Sci 7:603–612. https://doi.org/10.1021/acscentsci.1c00110

    Article  CAS  Google Scholar 

  22. Liu H, Wei H, Moore JS (2019) Frontal Ring-Opening Metathesis Copolymerization: Deviation of Front Velocity from Mixing Rules. ACS Macro Lett 8:846–851. https://doi.org/10.1021/acsmacrolett.9b00367

    Article  PubMed  CAS  Google Scholar 

  23. Robertson ID, Pruitt EL, Moore JS (2016) Frontal Ring-Opening Metathesis Polymerization of Exo-Dicyclopentadiene for Low Catalyst Loadings. ACS Macro Lett 5:593–596. https://doi.org/10.1021/acsmacrolett.6b00227

    Article  PubMed  CAS  Google Scholar 

  24. Robertson ID, Dean LM, Rudebusch GE, Sottos NR, White SR, Moore JS (2017) Alkyl Phosphite Inhibitors for Frontal Ring-Opening Metathesis Polymerization Greatly Increase Pot Life. ACS Macro Lett 6:609–612. https://doi.org/10.1021/acsmacrolett.7b00270

    Article  PubMed  CAS  Google Scholar 

  25. Robertson ID, Yourdkhani M, Centellas PJ, Aw JE, Ivanoff DG et al (2018) Rapid energy-efficient manufacturing of polymers and composites via frontal polymerization. Nature 557:223–227. https://doi.org/10.1038/s41586-018-0054-x

    Article  PubMed  CAS  Google Scholar 

  26. Alzate-Sanchez DM, Cencer MM, Rogalski M, Kersh ME, Sottos N, Moore JS (2022) Anisotropic Foams via Frontal Polymerization. Adv Mater 34:2105821. https://doi.org/10.1002/adma.202105821

    Article  CAS  Google Scholar 

  27. Wilson GO, Porter KA, Weissman H, White SR, Sottos NR, Moore JS (2009) Stability of Second Generation Grubbs’ Alkylidenes to Primary Amines: Formation of Novel Ruthenium-Amine Complexes. Adv Synth Catal 351:1817–1825. https://doi.org/10.1002/adsc.200900134

    Article  CAS  Google Scholar 

  28. Allaert B, Dieltiens N, Ledoux N, Vercaemst C, Van der Voort P et al (2006) Synthesis and activity for ROMP of bidentate Schiff base substituted second generation Grubbs catalysts. J Mol Catal A-Chem 260:221–226. https://doi.org/10.1016/j.molcata.2006.07.006

    Article  CAS  Google Scholar 

  29. Kim KO, Shin S, Kim J, Choi TL (2014) Living Polymerization of Monomers Containing endo-Tricyclo 4.2.2.0(2,5) deca-3,9-diene Using Second Generation Grubbs and Hoveyda-Grubbs Catalysts: Approach to Synthesis of Well-Defined Star Polymers. Macromolecules 47:1351–1359. https://doi.org/10.1021/ma5000333

    Article  CAS  Google Scholar 

  30. Kamau SD, Hodge P, Hall AJ, Dad S, Ben-Haida A (2007) Cyclo-depolymerization of olefin-containing polymers to give macrocyclic oligomers by metathesis and the entropically-driven ROMP of the olefin-containing macrocyclic esters. Polymer 48:6808–6822. https://doi.org/10.1016/j.polymer.2007.09.014

    Article  CAS  Google Scholar 

  31. Datta P, Efimenko K, Genzer J (2019) Thermally driven directional free-radical polymerization in confined channels. Polym Chem 10:920–925. https://doi.org/10.1039/c8py01550c

    Article  CAS  Google Scholar 

  32. Nabifar A, McManus NT, Vivaldo-Lima E, Lona LMF, Penlidis A (2009) Thermal polymerization of styrene in the presence of TEMPO. Chem Eng Sci 64:304–312. https://doi.org/10.1016/j.ces.2008.10.013

    Article  CAS  Google Scholar 

  33. Ivin KJ (2000) Thermodynamics of addition polymerization. J Polym Sci Pol Chem 38:2137–2146. https://onlinelibrary.wiley.com/doi/full/10.1002/%28SICI%291099-0518%2820000615%2938%3A12%3C2137%3A%3AAID-POLA20%3E3.0.CO%3B2-D

  34. Njoroge I, Kempler PA, Deng X, Arnold ST, Jennings GK (2017) Surface-Initiated Ring-Opening Metathesis Polymerization of Dicyclopentadiene from the Vapor Phase. Langmuir 33:13903–13912. https://doi.org/10.1021/acs.langmuir.7b02523

    Article  PubMed  CAS  Google Scholar 

  35. de la Caba K, Guerrero P, Mondragon I, Kenny JM (1998) Comparative study by DSC and FTIR techniques of an unsaturated polyester resin cured at different temperatures. Polym Int 45:333–338. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0126%28199804%2945%3A4%3C333%3A%3AAID-PI932%3E3.0.CO%3B2-T

  36. Jamaludin SMS, Azlan MRN, Fuad MYA, Ishak ZAM, Ishiaku US (2000) Quantitative analysis on the grafting of an aromatic group on polypropylene in melt by FTIR technique. Polym Test 19:635–642. https://doi.org/10.1016/s0142-9418(99)00036-7

    Article  CAS  Google Scholar 

  37. Wang J, Li Z, Basharat M, Wu S, Zhang S et al (2021) Effect of side groups on glass transition temperatures of Poly(ethoxy/phenoxy)phosphazenes: Prediction and synthesis. Polymer. https://doi.org/10.1016/j.polymer.2021.124068

    Article  Google Scholar 

  38. Tham MW, Fazita MRN, Khalil H, Zuhudi NZM, Jaafar M et al (2019) Tensile properties prediction of natural fibre composites using rule of mixtures: A review. J Reinf Plast Compos 38:211–248. https://doi.org/10.1177/0731684418813650

    Article  CAS  Google Scholar 

  39. Chiou BS, Schoen PE (2002) Effects of crosslinking on thermal and mechanical properties of polyurethanes. J Appl Polym Sci 83:212–223. https://doi.org/10.1002/app.10056

    Article  CAS  Google Scholar 

  40. Zhang S, Li X, Fan H, Fu Q, Gu Y (2019) Epoxy nanocomposites: Improved thermal and dielectric properties by benzoxazinyl modified polyhedral oligomeric silsesquioxane. Mater Chem Phys 223:260–267. https://doi.org/10.1016/j.matchemphys.2018.10.048

    Article  CAS  Google Scholar 

  41. Zhang L, Fei H, Li W, Yang P (2021) Rapid synthesis of diol homolog-based thermosets with tunable properties via ring-opening metathesis polymerization. Mater Adv 11:3671–3676. https://doi.org/10.1039/D1MA00210D

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the SHENGYI Technology Limited Corporation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.91 MB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huangfu, F., Li, W., Yang, Z. et al. Bulk ring-opening metathesis copolymerization of dicyclopentadiene and 5-ethylidene-2-norbornene: mixing rules, polymerization behaviors and properties. J Polym Res 29, 420 (2022). https://doi.org/10.1007/s10965-022-03268-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03268-z

Keywords

Navigation